Searches for new physics with top- and bottomquark signatures using the ATLAS detector

> Farida Fassi On behalf of the ATLAS Collaboration.

Mohammed V University, Rabat, Morocco Instituto de Física Corpuscular (IFIC) –Valencia, Spain

4th International Conference on New Frontiers in Physics, 23–30 August 2015, Kolymbari, Crete (Greece)

Introduction

- The discovery of a 125 GeV Higgs boson is established.
- However, there are many problems with the Standard Model (SM).
 - Hierarchy Problem,
 - Neutrino Oscillation,
 - Dark matter/Dark Energy,
 - Matter–Antimatter Asymmetry, Higgs mass stability, …
- One of the primary goals of LHC, is to search for New Physics Beyond the SM (BSM).
- Top quark still the heaviest fundamental particle; largest correction to the Higgs mass-squared
 - Top quark plays an important role in searches for physics BSM

BSM theories

- Some propositions for BSM physics:
 - Super symmetry, Extra dimensions,
 - Higher symmetry/Unified model, ···.
- Many possible extensions of the SM (non-SUSY)
 - GUT, Extra-dimension(s), Little Higgs, composite Higgs, …
- Predict new particles, coupling preferentially to the third generation
- Focus on searches with third generation quarks:
 - New coloured fermions: Vector-Like Quarks (VLQ)
 - New bosons: decaying to tt
 - Run 1 physics results: large dataset (20.3 fb⁻¹);
 - Results published or publication ready

In this talk

Vector like quarks

Top/Bottom Partners aka VLQs

- Predicted in various BSM models, including composite Higgs, can solve naturalness problem without SUSY
- Left and right-handed components transform in the same way under the EW group (SU(2)) → Interesting properties:
 - Gauge invariant mass term independent of Higgs.
 - A vector-like top can play a similar role as the stop in regulating Higgs mass divergence.

JHEP 11, 030 (2009)		(triplets not included)	
	Label	Charge	Decay mode
T singlet	Τs	+2/3	T-→W⁺b, Zt, ht
B singlet	Bs	-1/3	B- > W⁺t, Zb, hb
(T,B) doublet	ТВ _d	(+2/3, -1/3)	T- > W⁺b, Zt, ht B- > W⁺t, Zb, hb
(X,T) doublet	ХТ _d	(+5/3, +2/3)	X→W⁺t T→Zt, ht
(B,Y) doublet	BY _d	(-1/3, -4/3)	B-→Zb, hb Y-→W⁺b

- Couple preferentially with 3rd generation quarks
- Considering four different kinds of Vector Like Quarks with different charge
- May come in singlets, doublets, triplets

VLQs production mode at LHC

- Strongly produced in pairs: large $Q\overline{Q}$ cross section only dependent on mass (just like $t\overline{t}$)
 - Run-1 focus on pair-production

Single production dependent on mass, charge, coupling (like single top)

dominant for large VLQ masses:

 \mathbf{R}

VLQ Decay Modes

• Three decay modes: • $T \rightarrow Wb, T \rightarrow Zt, T \rightarrow Ht$ • $B \rightarrow Wt, B \rightarrow Zb, B \rightarrow Hb$

Branching Ratios (BR) are very model dependent, hence different general analyses were developed to cover all the possible decays

ATLAS Style limit plot

2D-BR plane for a given VLQ mass for many analyses

Pair VLQs production: $T\overline{T} \rightarrow Wb+X$

Event selection

•

Exactly one electron or muon $E_{\rm T}^{\rm miss} > 20 \text{ GeV}, E_{\rm T}^{\rm miss} + m_{\rm T}^W > 60 \text{ GeV}$ $\geq 4 \text{ jets}, \geq 1 b\text{-tagged jets}$

Apply technique to identify hadronic W_{had}:

- Exploit T's boosted kinematics to reconstruct W bosons.
- Two types of W_{had} candidates are defined :
 - W_{had}^{typel} : single merged jet, ($p_T > 400 GeV, \Delta R \le \Delta R_{cone} = 0.4$)
 - W_{had}^{typell} : two close-by jets, $(p_T > 250 GeV, \Delta R(j, j) < 0.8, m_{jj} = 60 - 120 GeV).$
- For W_{lep} candidates, is reconstructed using the lepton and E_T^{miss} .
- m_{reco} from had W+bjet (*) of tight selection is chosen to derive final results; better sensitivity

arXiv:1505.04306

type II

had

and W

type I

had

sum of W

events

Pair VLQs production: $T\overline{T} \rightarrow Ht+X$

arXiv:1505.04306

- $T\overline{T}$ production search, $T \rightarrow H(\rightarrow b\overline{b})t$
- Possible final states:
 HtHī, *HtZī*, *HtWb*
- Selection:
- → large jet and b-jet multiplicity
- → event categories: n jets (5, ≥6)/n b-tags(2, 3, ≥4)
- → Higgs-candidate from b-jets with min ∞R
- → two channels based on m_{bb}^{min∆R} (> or < 100 GeV)</p>
- → limits from $\mathbf{H}_{T} = \Sigma p_{T}$ (jets) + p_{T} (leptons) + E_{T}^{miss}

• tt dominant background

H_T excellent discriminating variable

Limits on the $T\bar{T}$ cross-section

Pair VLQs production: limits on TT arXiv:1505.04306

- Exclusion @95% CL
- ➢ BR(T→Wb=1) case
- obs (exp) limit:

➤ m_T >770(795) GeV

- Exclusion @95% CL
- SU(2) singlet case
- > obs (exp) limit:

➢ m_T > 800(755) GeV

Combination $TT \rightarrow (Wb+X) \& TT \rightarrow (Ht+X)$

- Exclusion @95% CL
- SU(2) doublet case
- obs (exp) limit:
 - ≻ m_T > 855(820) GeV

Limits on the BB cross-section

Pair VLQs production: BB→Hb+X & Limits arXiv:1505.04306

- BB \rightarrow Hb + X: same analysis as TT \rightarrow Ht + X
- only minor change on p_T leading b-jets (more boosted)

BR(B→Hb=1) case → Exclusion @95% CL limit m_B >625 GeV
 SU(2) singlet case → Exclusion @95% CL limit m_B >635 GeV

Farida Fassi (ICNFP2015)

Pair VLQs production: $T\overline{T}/B\overline{B} \rightarrow Z(t/b)+X$

JHEP 11 (2014) 104

Event selection

- Single e or μ trigger (24 GeV)
- At least e^+e^- or $\mu^+\mu^-$ with $|m_{\ell^+\ell^-} m_Z| < 10$ GeV, $p_T(\ell^+\ell^-) \ge 150$ GeV
- At least 2 central jets
- Two channels:
 - dilepton (exactly 2 leptons), at least 2 b-tagged jets
 - **trilepton** (at least 3 leptons), at least 1 *b*-tagged jet
- targets also single VLQ production: forward
 jet requirement
- → di-lepton: targets Z decays, T→Zt, B→Zb, observable m(Zb)
- → tri-lepton: targets multi-boson final states (W, Z, H), observable H_T

Pair VLQs production: $T\overline{T}/B\overline{B} \rightarrow Z(t/b)+X$ Limits on $T\overline{T} \& B\overline{B}$ JHEP 11 (2014) 104

Single VLQs production: $T/B \rightarrow Z(t/b) + X$ JHEP 11 (2014) 104

At least 1 forward jet

Single VLQ production: limits on T & B

JHEP 11 (2014) 104

- First LHC cross section limit on single VLQ production
- Sensitivity not sufficient to constrain electroweak couplings TWb & BZb
 - Single VLQ not quite yet competitive with pair production

Pair VLQs production: $B\overline{B} \rightarrow Wt+X$

Phys. Rev. D 91, 112011 (2015)

Event selection

- → 1 lepton (e, μ), E_{T}^{miss} , jets
- → categories: N jets, N hadronic W/Z, N b-jets, H₁
- → BDT with 12 variables, most discriminating:
 - H_T, ΔR (lep, b-jet 1), M_T(W lep)

> The output of the BDT is shown for the two different signal categories:

- BDT cross-checked
- With cut-based analysis

19

Pair VLQs production: $B\overline{B} \rightarrow Wt+X$ Limits on $B\overline{B}$ Phys. Rev. D 91, 112011 (2015)

Exclusion @95% CL limit

- SU(2) singlet case
- observed (expected) limit:
 - > m_B > 640 (505) GeV

- Best sensitivity in bottom-right corner where BR(B → Wt)=100%
 - Exclusion @95% CL limit
 observed (expected) limit:

 $> m_{\rm B} > 810 (760) \, {\rm GeV}$

Same-sign dileptons and b-jets

arXiv:1504.04605

Very small cross section in the Standard Model

Exotic Models:

- Pair production of chiral b' quarks
- Pair production of VLQ
- 4 top quark production
- Same-sign top quark production

• Pre-selection:

- 2 same flavor leptons with same electric charge $m_{||} > 15$ GeV, Z veto $|m_{||} m_Z| > 10$ GeV
- \geq 2 jets and \geq 1 b-tag
- Selection optimized for different signal regions
 - event categories based on H_T, N b-jets, E_{miss}
- > ~2 σ excess in categories with large H_T

Same-sign dileptons and b-jets Exlusion limits for Different Signals

arXiv:1504.04605

- Absence of any significant data excess in the H_T spectra
 Interpretation of several new physics models
- Exclusion @95% CL limit
 > m_B >0.62 TeV
 > m_T >0.59 TeV
- Exclusion @95% CL limit > m_b, > 0.73 TeV > m_{Sgloun} > 0.83TeV

> m_{KK} ≥ 0.96TeV

Pair VLQs production: generic limits arXiv:1505.04306

Exclusion @95% CL limit

- Expected: 715–885 GeV
- > Observed: 730–950 GeV

Exclusion @95% CL limit

- Expected: 615-800 GeV
- > Observed: 575-813 GeV

Lower mass limits for individual limits from most restrictive searches
 Best sensitivity in upper-left corners where BR(T → Ht)=100%

Farida Fassi (ICNFP2015)

Search for tb resonances

Eur. Phys. J. C (2015) 75:165; Physics Letters B 743 (2015) 235-255

Full hadronic analysis

- Target: $W' \rightarrow t (\rightarrow q \bar{q}' b) \bar{b}$ in the range [1.5,3] TeV
- Decay of **boosted** top \Rightarrow use of **large**-*R* jets
- Two channels:
 - one b-tag (no additional b-tagged jet)
 - background: 99% multijet
 - two b-tag (one additional small-R b-tagged jet inside top-tagged jet)
- Unbinned likelihood fit on m(tb)
- Background estimation fully from data
 - Exclusion @95% CL limit
 - $m_{W_{H}'} > 1.68 \; {
 m TeV}_{W_{R}'} > 1.76 \; {
 m TeV}_{W_{R}'}$
- Lepton+jets analysis
 Phy. Lett. B 743 (2015) 235–255

Search for ttbar resonances (lepton + jets)

- Two theoretical benchmarks to quantify sensitivity:
 - Narrow resonance (topcolor, leptophobic (Z'))
 - Γ_{Z'}/m_{Z'}=1.2% (or 1%) with K factor 1.3 [EPJ C72 (2012) 2072]

- Broad resonance (Kaluza-Klein (KK) gluons) from Randall Sundrum
 - Γ_{ggKK}/m_{gKK}=15.3% (10-15%) with no K factor

Search for enhancement in the invariant mass ttbar spectrum

g_{kk}

tt resonances

arXiv:1505.07018; accepted by JHEP

- Analysis strategy
 - ► The top pairs may decay in two main topologies: well separated jets and leptons, or boosted jet topologies → combined for limit setting.

A boosted top \rightarrow *Wb* decay $p \xrightarrow{t}{b} p$ \overline{t} \overline{t}

Two separate analyses for different topologies

"fat" jet

Search for tt resonances

arXiv:1505.07018; accepted by JHEP

- Single-lepton (e/ μ) final state
- Resolved + boosted selections
- Resolved: Reconstruct tt with I+MET+4 small radius jets (R=0.4); Choose kinematically best combinatorics
- Boosted:
 - Leptonic top = I +MET + nearby small radius jet (R=0.4)
 - Hadronic top = large radius jet (R=1.0) with high mass, hard substructure

- Boosted selection attempted first;
- Events that fail the boosted selection are examined using the resolved selection

Search for tt resonances

arXiv:1505.07018; accepted by JHEP

- Focus on invariant mass spectrum (m_{tt})
- Combine 12 m_{tt} event categories
 - 3 b-tag categories for 2 selections and for 2 decay channels
 - b-tag: leptonic side/hadronic side/both
 - resolved/boosted regime
 - lepton channel (e/ μ)

Search for tt resonances: results

arXiv:1505.07018; accepted by JHEP

- No significant deviation from the expected background is found • Upper limits on the $\overline{PP(Z' \rightarrow t\overline{t})}$ and $\overline{PP(KKg \rightarrow t\overline{t})}$
- Upper limits on the $\sigma_{Z'} \times BR(Z' \to t\bar{t})$ and $\sigma_{KKg} \times BR(KKg \to t\bar{t})$

Summary & outlook

No hints of new physics yet!!!

- Recent results with 2012, 8TeV data are presented
- All results consistent with Standard Model so far
- Limits are set for new physics models/particles

Exiting perspective

 LHC physics reach at TeV mass scale is greatly extended by the increased beam energy and intensity of Run 2

ATLAS has been doing great…

Very competitive analyses in Exotica searches

Acknowledgements:

We acknowledge the support of the Spanish R&D project of reference FPA2013-47424-C3-1-R

BACKUP

Top quarks in BSM searches

ATLAS-CONF-2013-084

- LHC searches entering TeV-scale: "Boosted" top quarks from BSM signals
 - Decay products of Boosted Tops collimated in direction of p_T
 - Separation can be described according to $\Delta R^{\approx} m/p_{T}$

- Efficient hadronic top tagging;
 - Large-radius jet as top candidate
 - Less combinatorics backgrounds
- Jet substructure can be exploited for powerful discriminants

Run-2 results so far

- Run 2 physics results:
 - limited dataset (<100 pb-1)</p>
 - only a few weeks to "look" at data
 - mostly "retuning" searches for higher energies
 - no complete searches yet
 - higher energy extends mass range:
 - sensitivity soon competitive (for some searches)

Pair VLQs production: $TT \rightarrow Wb+X$

arXiv:1505.04306

Selection	Requirements
Preselection	Exactly one electron or muon $E_{\rm T}^{\rm miss} > 20 \text{ GeV}, E_{\rm T}^{\rm miss} + m_{\rm T}^W > 60 \text{ GeV}$ $\geq 4 \text{ jets}, \geq 1 b \text{-tagged jets}$
Loose selection	Preselection $\geq 1 W_{had} \text{ candidate (type I or type II)}$ $H_{T} > 800 \text{ GeV}$ $p_{T}(b_{1}) > 160 \text{ GeV}, p_{T}(b_{2}) > 110 \text{ GeV (type I) or } p_{T}(b_{2}) > 80 \text{ GeV (type II)}$ $\Delta R(\ell, \nu) < 0.8 \text{ (type I) or } \Delta R(\ell, \nu) < 1.2 \text{ (type II)}$
Tight selection	Loose selection $\min(\Delta R(\ell, b_{1,2})) > 1.4, \min(\Delta R(W_{had}, b_{1,2})) > 1.4$ $\Delta R(b_1, b_2) > 1.0$ (type I) or $\Delta R(b_1, b_2) > 0.8$ (type II) $\Delta m < 250$ GeV (type I) [see text for definition]

Table 1: Summary of event selection requirements for the $T\bar{T} \rightarrow Wb+X$ analysis (see text for details).