

Identified charged hadron production in pp and Pb-Pb collisions with ALICE at the LHC

Maria Vasileiou on behalf of the ALICE Collaboration University of Athens – Faculty of Physics

- Introduction
- ALICE Detector and PID
- Results on identified hadrons from :
 - pp Collisions
 - Pb-Pb Collisions
- Nuclear Modification Factors
- Conclusions

Introduction

ALICE is designed to study the physics of strongly interacting matter under extremely high temperature and energy density conditions to investigate the properties of the quark-gluon plasma (QGP)

> pp collisions at $\sqrt{s} = 0.9$ TeV, 2.76 TeV, 7.0 TeV

- Test QCD inspired models
- Provide reference for p-Pb and Pb-Pb data
- **p-Pb collisions at** $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
 - Discriminate between initial (cold nuclear matter) and final state (QGP) effects
 - Provide reference for Pb-Pb data
- > **Pb-Pb collisions at** $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
 - Study the QGP

- PID via dE/dx in gas Ne/CO2 (90:10) – up to 159 samples
- Truncated mean dE/dx calculated and used for a wide range of momentum
- Largest separation achieved at low p (< 2.0 GeV/c)</p>

ALICE, Int. J. Mod. Phys. A29 (2014) 1430044

ALICE, Int. J. Mod. Phys. A29 (2014) 1430044

> At high p_T : particles separated on a statistical basis via multi-Gaussian fits

<u>**TOF**</u>

Time - Of - Flight: Multigap Resistive Plate Chambers (MRPC) PID at intermediate momenta

Resolution < 100ps</p>

ALICE, Int. J. Mod. Phys. A29 (2014) 1430044

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

ALI-PUB-72451

Ό

0.5

HMPID Cherenkov angle (rad)

<u>HMPID</u>

- High Momentum Particle Identification Detector : Consists of 7 RICH modules
- Proximity focusing configuration
- 3σ separation for π/K up to 3 GeV/c and for K/p up to 5 GeV/c

ALICE, Int. J. Mod. Phys. A29 (2014) 1430044

2.5

3.5

3

1.5

2

1

ICNFP2015 - International Conference on New Frontiers in Physics

M. Vasileiou

PID Separation Power

ALICE, Int. J. Mod. Phys. A29 (2014) 1430044

Demonstration of the complementarity of the different detector sysyems. Horizontal bars represent 2σ separation

Combined PID

ALICE, Int. J. Mod. Phys. A29 (2014) 1430044

Separation of hadron species further improved by combining information from multiple detectors

Particle Spectra in pp Collisions (I)

- ➢ Differential cross-section of charged particles in inelastic pp collisions as a function of p_T
- At high- p_T a clear evolution of the slope from $\sqrt{s} = 0.9$ to 7 TeV can be observed
- ➤ A NLO-pQCD calculation shows a similar evolution of the high- p_T dependence with \sqrt{s}

ALICE

Particle Spectra in pp Collisions (II)

- In all three ratios good agreement between data and NLO-pQCD calculations is found
- ➤ The relative increase of cross section with √s is well described by NLO-pQCD

ICNFP2015 - International Conference on New Frontiers in Physics

ALICE

Particle Spectra in p-Pb Collisions

- At high-p_T the distributions in p-Pb collisions are similar to those in pp collisions
- Quantative comparison to pp can be done with nuclear modification factors
- ➢ More on this later ...

Particle Spectra in Pb-Pb Collisions

- Inclusive charged particles spectra in different centrality intervals
- At low p_T the spectra differ from the pp reference
- ➢ Depletion at high- p_T with increasing centrality → indication of strong suppression of high- p_T particles

ALICE, Phys. Lett. B720 (2013) 52-62

ICNFP2015 - International Conference on New Frontiers in Physics

AI TCF

Identified Particle Spectra in Pb-Pb Collisions (I)

- > Distributions of positive and negative particles compatible within uncertainties at all p_{τ}
- Spectra get harder with increasing centrality

Identified Particle Spectra in Pb-Pb Collisions (II)

- > For peripheral collisions the shapes are similar to the ones in pp.
- For central collisions the spectra exhibit a reduction in the production of high-p_T particles with respect to an N_{coll} – scaled reference

ICNFP2015 - International Conference on New Frontiers in Physics

M. Vasileiou

Identified Particle Spectra in Central Pb-Pb

PHENIX, Phys.Rev. C69, 034909 (2004)

- Data are well described by the blast wave function with $\langle \beta_T \rangle = 0.65 \pm 0.02$ and $T_{kin} = 95 \pm 10 \text{ MeV}$
- Spectral shapes show a significant
 change from RHIC to LHC energies,
 having a harder distribution.
- Within hydrodynamic models, this indicates a stronger radial flow

Identified Particle Spectra in Central Pb-Pb Comparison with Models (I)

ALICE, Phys. Rev. C 88, 044910 (2013) STAR, Phys.Rev. C79 , 034909 (2009) PHENIX, Phys.Rev. C69, 034909 (2004) <u>VISH2+1</u>:

Viscous hydrodynamic model, no description of hadronic phase

<u> HKM</u> :

Model similar to VISH2+1, includes a hadronic cascade model (UrQMD)

Krakow :

- Nonequilibrium corrections due to viscosity at the transition from the hydrodynamic description to particles.
- Model seems successful in reproducing the data

AI TCF

Identified Particle Spectra in Central Pb-Pb Comparison with Models (II)

ALICE, Phys. Rev. C 88, 044910 (2013) STAR, Phys.Rev. C79 , 034909 (2009) PHENIX, Phys.Rev. C69, 034909 (2004) EPOS :

- Initial hard scattering creates "flux tubes" which either escape the medium or contribute to the bulk matter.
- Includes a hadronic cascade model (UrQMD).
- Shows a good agreement with the data

Blast-Wave fit parameters compared to RHIC

ALICE, Phys. Rev. C88, 044910(2013) STAR, Nucl. Phys. A757, 102 (2005)

- \succ < β_T > increases and T_{kin} decreases with centrality
- Possible indication of a more rapid expansion with increasing centrality
- In peripheral collisions consistent with the expectation of a shorter lived fireball with stronger radial gradients

Particle Ratios in pp and Pb-Pb Collisions

ALICE, Phys. Lett. B736 (2014) 196-207

- At intermediate p_T an enhancement of the p/ π is observed and the peak reaches ~ 0.83 in central Pb-Pb collisions
- Krakow : Describes the rise of the ratios
- **EPOS** : Qualitatively describes the data, but overestimates the peak
- Fries et al : Recombination of soft thermal radially flowing partons Describes the shape of the data

Nuclear Modification Factor of Inclusive Charged Particles

ALICE, Phys. Lett. B720 (2013) 52-62

 $R_{AA} = rac{d^2 N_{AA}/dp_{
m T} dy}{\langle N_{coll}
angle d^2 N_{nn}/dp_{
m T} dy}$

- Suppression for all centrality intervals
- Larger suppression for more central events
- > Minimum around $p_T = 6 \text{ GeV/c}$
- Suppression of high-p_T particles strongly depends on event centrality

Nuclear Modification Factor in Central Pb-Pb Collisions Comparison with STAR and PHENIX

ALICE, Phys. Lett. B696(2011) 30-39 STAR, Phys. Rev. Lett. 91 (2003) 172302 PHENIX, Phys.Rev. C 69 (2004) 034910

- Position and shape of the maximum at p_T ~ 2 GeV/c and subsequent decrease, similar at RHIC and LHC
- At p_T ~ 6 GeV/c , R_{AA} smaller than at RHIC. This suggests an enhanced energy loss at LHC and therefore a denser medium

Nuclear Modification Factor of Inclusive Charged Particles Comparison with Models

ALICE, Phys. Lett. B720 (2013) 52-62 CMS, Eur. Phys. J. C72 (2012) 1945

- ALICE and CMS measurements agree within their statistical and systematic uncertainties
- Model calculations except WHDG use a hydrodynamical description of the medium.

Nuclear Modification Factor of п, К,р

ALICE, Phys. Lett. B736 (2014) 196-207

> p_{τ} > 10 GeV/c : strong suppression for all particles in central collisions much smaller suppression in peripheral collisions

R_{pPb} Compared to R_{PbPb} (I)

ALICE, Phys. Rev. Lett.110 (2013) 082302

- R_{pPb} consistent with unity for $p_T > 2 \text{ GeV/c}$
- Strong suppression observed in central Pb-Pb collisions not due to an initial state effect
- May be a fingerprint of the hot matter created in Pb-Pb collisions

R_{pPb} Compared to R_{PbPb} (II)

ALICE, Phys. Rev. Lett.110 (2013) 082302 ALICE, Phys.Lett. B720 (2013) 52 CMS, Eur.Phys.J. C72 (2012) 1945 CMS.Phys.Lett. B 710 (2012) 256 CMS, Phys. Rev.Lett. 106 (2011) 212301 CMS, Phys.Lett.B 715 (2012) 66 R_{pPb} consistent with unity for p_T up to 50 GeV/c

ALICE p-Pb results at high-p_T consistent with the observation of binary collision scaling in Pb-Pb of observables not affected by QCD hot matter

Conclusions (I)

- Spectra of inclusive and identified charged particles measured by ALICE in pp, p-Pb and Pb-Pb collisions have been presented
- ➤ Central Pb-Pb collisions spectral shapes indicate a strong increase of the radial flow velocity with $\sqrt{s_{NN}}$, which in hydrodynamic models is expected as a consequence of the increasing particle density
- Strong high- p_T production suppression is measured in central Pb-Pb collisions

Conclusions (II)

- No suppression is observed at high-p_T in minimum bias p-Pb collisions
- Strong suppression of high- p_T hadrons observed in central Pb-Pb collisions is not due to an initial state effect but may instead be a signature of the hot matter created in Pb-Pb collisions

Thank you!

Centrality Selection in Pb-Pb Collisions

ALICE, Phys. Rev. C88, 044909 (2013)

Distribution of the V0 amplitude Curve: Glauber model fit to the measurement

Particle Spectra in Central Pb-Pb collisions Hydrodynamical Models

VISH2+1:

C. Shen, U. Heinz, P. Huovinen, and H. Song, Phys. Rev. C 84, 044903 (2011).

<u> HKM:</u>

- I. Karpenko, Y. Sinyukov, and K. Werner, Phys. Rev. C 87, 024914 (2013).
- Y. Karpenko and Y. Sinyukov, J. Phys. G 38, 124059 (2011).

Krakow:

- P. Bozek, Phys. Rev. C 85, 034901 (2012).
- P. Bozek, Acta Phys. Polon. B 43, 689 (2012).

EPOS:

- K. Werner, I. Karpenko, M. Bleicher, T. Pierog, and
- S. Porteboeuf-Houssais, Phys. Rev. C 85, 064907 (2012).