Single Top Quark Production Cross Section and Properties Using the ALTAS Detector at the LHC

Andrew Chegwidden Michigan State University

Carha

on behalf of the ATLAS Collaboration

4th International Conference on New Frontiers in Physics Kolymbari, Crete, Greece 26.08.2015

Outline

- Why Study Single Top Processes?
- Single Top Quark Phenomenology
- Measurements
 - t-channel
 - Wt channel
- Searches
 - s-channel
 - Heavy Gauge Bosons (W')
 - Monotops
 - FCNC

LIGHT HEAVY

5

Massive

- most massive elementary particle...that we know of
- Higgs mass corrections
- hierarchy problem

Decay Before Hadronization

only opportunity to observe bare parton

Background in Other Searches

• background to Higgs, SUSY, etc...

Unique Tests of Standard Model

- ratio of u and d quark PDF
- unitarity test of CKM matrix, $|V_{tb}|$ extraction
- top quark polarization, W boson helicity, etc...

Beyond the Standard Model Probe

- Wtb anomalous couplings
- flavor changing neutral currents
- heavy gauge bosons
- dark matter

Chegwidden, MSU

Single Top Quark Phenomenology

t-channel generic selection

- 2 high p⊤ jets
 - 1 forward light jet
 - 1 central b-jet
- 1 isolated, high p_T lepton
- E_T^{Miss}

Wt-channel generic selection

- 1 high p⊤ central b-jet
- 2 isolated, high p_T leptons
- E_T^{Miss}

s-channel generic selection

- 2 high p_T central b-jets
- 1 isolated high p_T lepton
- E_TMiss

* calculations made assuming a top mass of 172.5 GeV and using the MSTW 2008 NNLO PDF

ICNFP 2015

q

Chegwidden, MSU

 \bar{q}' \bar{b}

 $\int_{W}^{b} \int_{W}^{t} \sigma_{Wt-ch}^{\text{theory}} = 15.74^{+1.17}_{-1.21} \text{ pb } @ 7 \text{ TeV}$ $\sigma_{Wt-ch}^{\text{theory}} = 22.37 \pm 1.52 \text{ pb } @ 8 \text{ TeV}$ Phys. Rev. D 82, 054018 (2010) $\int_{W}^{t} \sigma_{Wt-ch}^{\text{theory}} = 4.63^{+0.20} \text{ pb } @ 7 \text{ TeV}$

 $\sigma_{t-\text{ch}}^{\text{theory}} = 64.57^{+2.63}_{-1.74} \text{ pb} @ 7 \text{ TeV}$

 $\sigma_{t-ch}^{theory} = 87.76^{+3.44}_{-1.91} \text{ pb} @ 8 \text{ TeV}$

Phys. Rev. D 83, 091503 (2011)

$$\sigma_{s-ch}^{theory} = 4.63^{+0.20}_{-0.18} \text{ pb} @ 7 \text{ TeV}$$

 $\sigma_{s-ch}^{theory} = 5.61 \pm 0.22 \text{ pb} @ 8 \text{ TeV}$

Phys. Rev. D 81, 054028 (2010)

t-chan Cross Section Measurements

$\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ ATLAS-CONF-2014-007

$\sqrt{s} = 7 \text{ TeV}, 4.6 \text{ fb}^{-1}$ Phys. Rev. D. 90, 112006

Chegwidden, MSU

$\frac{2}{3}$ t-channel Cross Section ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹) 5

Final State Selection

• 1 light quark, 1 b-jet, 1 electron or muon, E_T^{Miss}

ATLAS-CONF-2014-007

t-channel Cross Section ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹) 5

Signal Discrimination

Neural Network

SA D

most discriminating variables: |η(j)| and m(lvb)

ATLAS-CONF-2014-007

t-channel Cross Section ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹) 5

Signal Discrimination

Neural Network

SA D

most discriminating variables: |η(j)| and m(lvb)

t-channel Fiducial Cross Section (\sqrt{s} = 8 TeV, 20.3 fb⁻¹)

5

Cross Section Determination (fiducial)

- cross section in region of phase-space visible by ATLAS
- easier theoretical interpretation
- reduced sensitivity to theoretical uncertainties

dominated by JES and generator modeling uncertainties

ATLAS-CONF-2014-007

AS B

t-channel Inclusive Cross Section ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹) Cross Section Determination (inclusive) • uses acceptance of different MC generators $\sigma_{inc} = \frac{1}{-\sigma_{fid}}$

selection cuts of fiducial volume in backup

$$\sigma_{\rm inc} = 82.6 \pm 1.2 ({\rm stat}) \pm 12.0 ({\rm syst}) ~{\rm pb}$$

$$\sigma_{\rm inc} = \frac{1}{\epsilon_{\rm fid}} \sigma_{\rm fid}$$

 $\frac{\delta\sigma_{\rm inc}}{\sigma_{\rm inc}} = 15\%$

Chegwidden, MSU

t-channel Differential Cross Section ($\sqrt{s} = 7$ TeV, 4.6 fb⁻¹)

Cross Section Determination (differential)

- first differential cross section measurements
- given in both p_T(t) and |y(t)|

Phys. Rev. D. 90, 112006 (2014)

Top vs Antitop Production, Rt

- standard model test
- u and d quark in PDFs

dominated by JES, generator modeling, and b-tagging efficiency uncertainties

Wt-chan Cross Section Measurement $\sqrt{s} = 8$ TeV, 20.3 fb⁻¹ ATLAS-CONF-2013-100

$\frac{3}{2}$ Wt-channel Inclusive Cross Section (\sqrt{s} = 8 TeV, 20.3 fb⁻¹) 5

Final State Selection

• 1 electron, 1 muon (opposite sign), E^{™iss}, 1 or 2 jets (≥1 b-tagged)

ATLAS-CONF-2013-100

⁹ Wt-channel Inclusive Cross Section ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹)

Signal Discrimination

- Boosted Decision Trees
- classifiers defined for 1-jet and 2-jet events
- most discriminating variables: pT^{sys}

Chegwidden, MSU

b

Wt-channel Inclusive Cross Section (\sqrt{s} = 8 TeV, 20.3 fb⁻¹)

Cross Section Determination

maximum-likelihood fit to BDT distributions

Results

- observed (expected) significance of 4.2σ (4.0σ)
- inclusive cross section
- CKM matrix element $|V_{tb}|$ with lower limit (later slide)

Wt- and t-chan |V_{tb}| Measurements $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ **ATLAS-CONF-2013-100 ATLAS-CONF-2014-007**

|Vtb| Measurements from t- and Wt-channels

Assumptions NOT made

- unitarity of CKM matrix
- number of quark generations

 $\begin{aligned} \textbf{t-channel} \\ |V_{tb}| &= 0.97^{+0.09}_{-0.10} \ \frac{\delta |V_{tb}|}{|V_{tb}|} = 9\% \\ |V_{tb}| &> 0.78 \text{ at } 95\% \text{ CL} \end{aligned}$

ATLAS-CONF-2014-007

Wt-channel $|V_{tb}| = 1.10 \pm 0.12 \quad \frac{\delta |V_{tb}|}{|V_{tb}|} = 11\%$

 $|V_{tb}| > 0.72$ at 95% CL

ATLAS-CONF-2013-100

s-chan Search $\sqrt{s} = 8$ TeV, 20.3 fb⁻¹ Phys. Lett. B 740 (2015) 118

 u_l

Final State Selection

AS

• 1 electron or muon, 2 b-jets, E_T^{Miss}

W1+ Qbt \bar{q}' \overline{b} Phys. Lett. B 740 (2015) 118

s-channel Search ($\sqrt{s} = 8 \text{ TeV}$, 20.3 fb⁻¹)

Signal Discrimination

SA D

- Boosted Decision Tree
- most discriminating variables: $|\Delta \phi(b,t)|$ and $H_T(Iep+E_T^{Miss})$

Chegwidden, MSU

s-channel Search ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹)

Cross Section Determination

maximum-likelihood fit to classifier distributions

Results

- observed (expected) significance of 1.3σ (1.4σ)
- upper limit of 14.6 pb on production cross section at 95% CL
- limited by systematic uncertainties

dominated by E^{TMiss} scale and JES uncertainties

$$\sigma_{\rm s} = 5.0 \pm 1.7 ({\rm stat}) \pm 4.0 ({\rm syst}) ~{\rm pb}$$

$$\sigma_{s-\mathrm{ch}}^{\mathrm{theory}} = 5.61 \pm 0.22 \text{ pb}$$

Phys. Lett. B 740 (2015) 118

Chegwidden, MSU

Search for W' \rightarrow tb $\sqrt{s} = 8$ TeV, 20.3 fb⁻¹ Phys. Lett. B 743 (2015)

ATLAS

W' Search ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹)

BSM Search

- search for new vector currents mediated by heavy gauge boson (W')
- left/right handed W' bosons are searched for between 0.5 and 3 TeV

Final State Selection

• 1 electron or muon, 2 b-jets, ET^{Miss}

Phys. Lett. B 743 (2015) 235-255

e⁺,μ⁺

bo

b1

Signal Discrimination

- Boosted Decision Trees
- left and right handed W' in 2-jet and 3-jet regions

Chegwidden, MSU

e⁺,μ⁺

b,

b1

Results

- limits set on W'_R and W'_L masses
- $m(W'_L) > 1.70$ TeV at 95% CL
- $m(W'_R) > 1.92 \text{ TeV} \text{ at } 95\% \text{ CL}$ *in backup

Phys. Lett. B 743 (2015) 235-255

3

Search for Monotops $\sqrt{s} = 8$ TeV, 20.3 fb⁻¹ Eur. Phys. J. C 75 (2015) 79

BSM Search

- search for single top quarks produced with large $E_{\mathsf{T}}^{\mathsf{Miss}}$
- dark matter candidate search
- resonant and non resonant production models

Final State Selection

• 1 electron or muon, 1 b-jet, ET^{Miss}

Signal Discrimination

- cut based approach using $M_T(I, E_T^{Miss})$ and $|\Delta \phi(I, b)|$
- optimization done to maximize expected limits

Results

- limits set on effective coupling strength
- limits set on m(v_{met}) and m(f_{met})

for $a_{\text{non-res}} = 0.2$, $m(v_{\text{met}}) > 657 \text{ GeV}$ at 95% CL

for $a_{\rm res} = 0.2$, $m(f_{\rm met}) > 100$ GeV at 95% CL *in backup

Eur. Phys. J. C 75 (2015) 79

Single Top via FCNC $\sqrt{s} = 8$ TeV, 20.3 fb⁻¹ TOPQ-2014-13

Single Top via FCNC Search (√s = 8 TeV, 20.3 fb⁻¹)

Events / 0.13

Data/Expected

BSM Search

- search for single top quarks via FCNC in production vertex
- QCD multijet background makes search in the t \rightarrow gq decay vertex challenging

Final State Selection

• 1 electron or muon, 1 b-jet, ET^{Miss}

Signal Discrimination

Neural Network

Main Systematics

- JES/JER
- PDF uncertainties
- b/c-tagging efficiencies

Results

- limits set on coupling parameters κ_{ugt} and κ_{cgt}
- limits set on $\mathcal{BR}(t \rightarrow cg)$ and $\mathcal{BR}(t \rightarrow ug)$

$$\mathcal{L}_{\text{eff}} = g_s \sum_{q=u,c} \frac{\kappa_{qgt}}{\Lambda} \bar{t} \, \sigma^{\mu\nu} T^a (f_q^L P_L + f_q^R P_R) \, q \, G_{\mu\nu}^a + h.c.,$$

$$\frac{\kappa_{ugt}}{\Lambda} < 5.8 \times 10^{-3} \text{ TeV}^{-1} \qquad \mathcal{B}\left(t \to ug\right) < 4.0 \times 10^{-5}$$

$$\frac{\kappa_{cgt}}{\Lambda} < 13 \times 10^{-3} \text{ TeV}^{-1} \quad \mathcal{B}\left(t \to cg\right) < 17 \times 10^{-5}$$

ICNFP 2015

Single Top via FCNC Search ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹)

BSM Search

- search for single top quarks via FCNC in production vertex
- QCD multijet background makes search in the t \rightarrow gq decay vertex challenging

Final State Selection හි0.30 • 1 electron or muon, 1 b-jet, ET^{Miss} ب ش 0.25 **Signal Discrimination** Neural Network 0.20 **Main Systematics** 0.15 • JES/JER PDF uncertainties b/c-tagging efficiencies 0.10

Results

- limits set on coupling parameters κ_{ugt} and κ_{cgt}
- limits set on $\mathcal{BR}(t \rightarrow cg)$ and $\mathcal{BR}(t \rightarrow ug)$

$$\mathcal{L}_{\rm eff} = g_s \sum_{q=u,c} \frac{\kappa_{qgt}}{\Lambda} \bar{t} \, \sigma^{\mu\nu} T^a (f_q^L P_L + f_q^R P_R) \, q \, G_{\mu\nu}^a + h.c.,$$

$$\frac{\kappa_{ugt}}{\Lambda} < 5.8 \times 10^{-3} \text{ TeV}^{-1} \qquad \mathcal{B}\left(t \to ug\right) < 4.0 \times 10^{-5}$$

$$\frac{\kappa_{cgt}}{\Lambda} < 13 \times 10^{-3} \text{ TeV}^{-1} \quad \mathcal{B}\left(t \to cg\right) < 17 \times 10^{-5}$$

- ATLAS is performing a wide range of studies involving single top quark
- Cross section measurements for t- and Wt-channels were presented
- Presented search results for s-channel analysis
- Showed |V_{tb}| matrix element extractions
- Latest limits on BSM searches were shown
- Measurements and additional searches underway for Run-II
- Visit our <u>public page</u> for up-to-date results

13 TeV t-channel single top event display

 W^{\dagger}

central b-jet (p_T ~ 50 GeV)

BACKUP

Summary Plots

Single Top Cross Section ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹) 5

t-channel Cross Section ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹) 5

Wt-channel Cross Section ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹)

Top Mass Summary ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹)

VTLAS

Single Top via FCNC Search ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹) **5**

$$\mathcal{L}_{\text{eff}} = g_s \sum_{q=u,c} \frac{\kappa_{qgt}}{\Lambda} \bar{t} \, \sigma^{\mu\nu} T^a (f_q^L P_L + f_q^R P_R) \, q \, G_{\mu\nu}^a + h.c.,$$

 $\frac{\kappa_{ugt}}{\Lambda} < 5.8 \times 10^{-3} \text{ TeV}^{-1} \qquad \mathcal{B}\left(t \to ug\right) < 4.0 \times 10^{-5}$

$$\frac{\kappa_{cgt}}{\Lambda} < 13 \times 10^{-3} \text{ TeV}^{-1} \qquad \mathcal{B}\left(t \to cg\right) < 17 \times 10^{-5}$$

Chegwidden, MSU

44

t-chan Cross Section Measurements

$\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ ATLAS-CONF-2014-007

5

Selection Cuts in Fiducial Volume

Object	Cut
Electrons	$p_{\rm T}$ > 25 GeV and $ \eta $ < 2.5
Muons	$p_{\rm T}$ > 25 GeV and $ \eta $ < 2.5
Jets	$p_{\rm T}$ > 30 GeV and $ \eta $ < 4.5
	$p_{\rm T} > 35$ GeV, if $2.75 < \eta < 3.5$
Lepton (ℓ), Jets (j_i)	$\Delta R(\ell, j_i) > 0.4$
$E_{\mathrm{T}}^{\mathrm{miss}}$	$E_{\rm T}^{\rm miss} > 30 {\rm ~GeV}$
Transverse W-boson mass	$m_{\rm T}(W) > 50 {\rm ~GeV}$
Lepton (ℓ), jet with the highest $p_{\rm T}$ (j_1)	$p_{\rm T}(\ell) > 40 \; { m GeV}\left(1 - \frac{\pi - \Delta \phi(j_1, \ell) }{\pi - 1}\right)$

- stable particles; mean lifetime > 30ps
- lepton from W boson decay
- lepton dressed with photons within a cone of ΔR <0.1
- E_T^{Miss} vectorial sum of neutrinos form W boson decay
- AKT4 jets used
- overlap removal; reject events with ΔR(lep,b-jet)<0.4

t-channel Cross Section ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹) 5

и

b

W

 W^+

Signal Discrimination

Neural Network

SA D

most discriminating variables: |η(j)| and m(lvb)

b Event fraction $\sqrt{s} = 8 \text{ TeV}$ ATLAS Preliminary Simulation - SR 0.15 — t-channel W+jets 0.1 *tt*,*Wt*,*s*-channel 0.05 0.2 0.4 0.6 8.0 $\tilde{0}$ NN output

ATLAS-CONF-2014-007

t-channel Differential Cross Section ($\sqrt{s} = 7$ TeV, 4.6 fb⁻¹)

Chegwidden, MSU

VTLAS

t-channel Differential Cross Section ($\sqrt{s} = 7$ TeV, 4.6 fb⁻¹)

Chegwidden, MSU

VTLAS

$\frac{3}{2}$ t-channel R_t Measurement ($\sqrt{s} = 7$ TeV, 4.6 fb⁻¹) 5

 $\sigma_{\text{t-chan}}(t) = 46 \pm 1(\text{stat}) \pm 3(\text{syst}) \text{ pb}$ $\sigma_{\text{t-chan}}^{\text{theory}}(t) = 41.9^{+1.8}_{-0.9} \text{ pb}$

 $\sigma_{\text{t-chan}}(\bar{t}) = 23 \pm 1(\text{stat}) \pm 3(\text{syst}) \text{ pb}$ $\sigma_{\text{t-chan}}^{\text{theory}}(\bar{t}) = 22.7^{+0.9}_{-1.0} \text{ pb}$

s-chan Search $\sqrt{s} = 8$ TeV, 20.3 fb⁻¹ Phys. Lett. B 740 (2015) 118

s-channel Search (\sqrt{s} = 8 TeV, 20.3 fb⁻¹)

Signal Discrimination

SA D

- Boosted Decision Tree
- most discriminating variables: $|\Delta \phi(b,t)|$ and $H_T(Iep+E_T^{Miss})$

Search for W' \rightarrow tb $\sqrt{s} = 8$ TeV, 20.3 fb⁻¹ Phys. Lett. B 743 (2015)

Results

• limits set W'_R and W'_L masses $m(W'_L) < 1.70$ GeV at 95% CL $m(W'_R) < 1.92$ GeV at 95% CL

Phys. Lett. B 743 (2015) 235-255

ATLAS

W' Search ($\sqrt{s} = 8$ TeV, 20.3 fb⁻¹)

• limits combined with hadronic analysis

Phys. Lett. B 743 (2015) 235-255

Search for Monotops $\sqrt{s} = 8$ TeV, 20.3 fb⁻¹ Eur. Phys. J. C 75 (2015) 79

Results

- limits set on effective coupling strength
- limits set on m(v_{met}) and m(f_{met})

for $a_{\rm res} = 0.2$, $m(f_{\rm met}) > 100$ GeV at 95% CL

for $a_{\text{non-res}} = 0.2$, $m(v_{\text{met}}) > 657 \text{ GeV}$ at 95% CL

Eur. Phys. J. C 75 (2015) 79

Chegwidden, MSU

Anomalous Couplings $\sqrt{s} = 7$ TeV, 4.6 fb⁻¹ ATLAS-CONF-2013-032

CILAS

Anomalous Couplings ($\sqrt{s} = 7$ TeV, 4.66 fb⁻¹)

BSM Search

- search for CP violation in the decay of single top quarks
- measures the forward-backward asymmetry
- a non-zero value is indicative of CP violating contribution to Wth

Final State Selection

• 1 electron or muon, 1 b-jet, E_T^{Miss}

Signal Discrimination

cut and count analysis

 $A_{\rm FR}^{\rm N} = 0.64 P \mathbb{I}(g_{\rm R})$

Main Systematics

- generator modeling uncertainties
- parton shower
- JES/JER

Results

- forward-backward asymmetry
- limits on $Im(g_R)$
- good agreement with SM

$$A_{\text{FB}}^{\text{N}} = 0.031 \pm 0.065 (\text{stat})_{-0.031}^{+0.029} (\text{syst})$$

 $-0.20 < \text{Im} (g_R) < 0.30 @ 95\% \text{ CL}$

of single top quarks
mmetry
violating contribution to *Wtb* vertex

$$A_{z} = \frac{N_{evt}(\cos\theta > z) - N_{evt}(\cos\theta < z)}{N_{evt}(\cos\theta > z) + N_{evt}(\cos\theta < z)}$$

$$M_{B} = 0.64 P I(g_{R})$$

$$\int_{\overline{N}}^{0.05} \int_{0.087ed}^{0.05616} \int_{1.02}^{0.05616} \int_{0.05616}^{0.05616} \int_{1.02}^{0.05616} \int_{1.02}^{0.05616} \int_{0.05616}^{0.05616} \int_{0$$

ATLAS-CONF-2013-032

Chegwidden, MSU