<u>Neutrino Oscillation and Resolving</u> the Neutrino Mass Ordering

D. Jason Koskinen

August 29, 2015 4th International Conference on New Frontiers in Physics

The Niels Bohr International Academy

Neutrino Admixture

Flavor Mass Eigenstate Eigenstate $\begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\tau\rangle \end{pmatrix} = \mathcal{U}_{\text{PMNS}} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_9\rangle \end{pmatrix}$ $= \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{-1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix}$

 Neutrinos are produced/detected in 'flavor' states but move through space as a composition of 'mass' states

Measuring Parameters

$$\begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\tau\rangle \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix}$$

underlying nature of weak mixing

 $C_{12} = \cos \theta_{12} \qquad S_{12} = \sin \theta_{12}$

$$\begin{pmatrix} |\mathbf{v}_{e}\rangle \\ |\mathbf{v}_{\mu}\rangle \\ |\mathbf{v}_{\tau}\rangle \end{pmatrix} = \begin{bmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{bmatrix} \begin{pmatrix} |\mathbf{v}_{1}\rangle \\ |\mathbf{v}_{2}\rangle \\ |\mathbf{v}_{3}\rangle \end{pmatrix}$$
 Experimentally measured values

Three angles and one Charge-Parity phase

What Is Being Measured?

*NOW2014

Fundamental Mixing

Quarks (CKM)

$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$

Leptons (PMNS)

$$\begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\tau\rangle \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix}$$

Currently Assumes Unitarity

Fundamental Mixing

Quarks (CKM)

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

xduded area has CL > 0.95 1.0 Δm_d & Δm_s sin 2β 0.5 ∆m_d ϵ_{K} 0.0 α $|V_{ub}|_{r}$ -0.5 -1.0 $\cos 2\beta < 0$ 0.95) -1.5 0.5 -1.0 -0.5 0.0 1.0 1.5 2.0 $\overline{\rho}$ **Confirms Unitarity**

Leptons (PMNS)

$$\begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\tau\rangle \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix}$$

Currently Assumes Unitarity

1.5

Fundamental Mixing

Quarks (CKM) Leptons (PMNS) $\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix} \qquad \begin{pmatrix} |\nu_e\rangle \\ |\nu_\mu\rangle \\ |\nu_\tau\rangle \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix} \begin{pmatrix} |\nu_1\rangle \\ |\nu_2\rangle \\ |\nu_3\rangle \end{pmatrix}$ NuFIT 2.0 (2014) 1.5 xduded area has CL > 0.95 0.5 $z = -\frac{U_{\mu 1} U_{\tau 1}^{*}}{U_{\mu 3} U_{\tau 3}^{*}}$ 1.0 Δm_d & Δm_s sin 2B 0.5 ∆m_d lm(z) $U_{\mu3} U_{\tau3}^*$ 0 0.0 $U_{\mu 2}U_{\tau 2}^{\ast}$ α Vub -0.5 -0.5 -1.0 -0.5 0.5 0 -1.5 Re(z) -1.0 0.5 -0.5 0.0 1.0 1.5 2.0 p Currently Assumes Unitarity Confirms Unitarity

D. Jason Koskinen - ICNFP2015

Neutrino Oscillation

- The three conventional neutrino angles have been measured, but NOT all the 9 individual PMNS elements
- More data and more oscillation channels are necessary to complete even a minimally constraining PMNS 'unitary' triangle

Mass Ordering

Why? (Models)

- 86 models were identified in 2006* for lepton flavor symmetries
 - 55 are now disfavored for predicting $\theta_{13} > 3$ sigma from measured
 - A prime remaining discriminator is the predicted order Inverted/ Normal

*hep-ph/0608137 TABLE I: Mixing Angles for Models with Lepton Flavor Symmetry.

Reference		Hierarchy	$\sin^2 2\theta_{23}$	$\tan^2\theta_{12}$	$\sin^2 heta_{13}$
Anarchy	y Ma	odel:			
dGM	[18]	Either			≥ 0.011 @ 2σ
$L_e - L_\mu - L_{\tau_i}$ Models:					
BM	[35]	Inverted			0.00029
BCM	[36]	Inverted			0.00063
GMN1	[37]	Inverted		≥ 0.52	≤ 0.01
GL	[38]	Inverted			0
\mathbf{PR}	[39]	Inverted		≤ 0.58	≥ 0.007
S ₃ and S ₄ Models:					
CFM	[40]	Normal			0.00006 - 0.001
HLM	[41]	Normal	1.0	0.43	0.0044
		Normal	1.0	0.44	0.0034
KMM	[42]	Inverted	1.0		0.000012
MN	[43]	Normal			0.0024
MNY	[44]	Normal			0.000004 - 0.000036
MPR	[45]	Normal			0.006 - 0.01
RS	[46]	Inverted	$\theta_{23} \ge 45^{\circ}$		≤ 0.02
		Normal	$\theta_{23} \le 45^{\circ}$		0
TY	[47]	Inverted	0.93	0.43	0.0025
Т	[48]	Normal			0.0016 - 0.0036
A ₄ Tetr	ahed	lral Models:			
ABGMP	[49]	Normal	0.997 - 1.0	0.365 - 0.438	0.00069 - 0.0037
AKKL	[50]	Normal			0.006 - 0.04
Ma	[51]	Normal	1.0	0.45	0
SO(3) N	Iode	ls:			
М	[52]	Normal	0.87 - 1.0	0.46	0.00005
Texture Zero Models:					
CPP	[53]	Normal			0.007 - 0.008
		Inverted			≥ 0.00005
		Inverted			≥ 0.032
WY	[54]	Either			0.0006 - 0.003
		Either			0.002 - 0.02
		Either			0.02 - 0.15

• If the neutrino is a majorana particle <u>and</u> the mass ordering is inverted, then current $0\nu\beta\beta$ experiments are in good shape, but if not...

Resolving the Neutrino Mass Ordering via Oscillation

Oscillations in Matter

 Electron (anti)neutrinos pick up an `effective' mass, which modifies the vacuum oscillation probability

Matter

Vacuum Oscillations
$$P_{\alpha\alpha} = 1 - \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E}$$

Matter Oscillations $P_{\alpha\alpha} = 1 - \sin^2 2\tilde{\theta} \sin^2 \frac{\Delta \tilde{m}^2 L}{4E}$
 $\Delta \tilde{m}^2 = \xi \cdot \Delta m^2, \quad \sin 2\tilde{\theta} = \frac{\sin 2\theta}{\xi},$
 $\xi \equiv \sqrt{\sin^2 2\theta} + (\cos 2\theta - \hat{A})^2,$
 $\hat{A} = \frac{2EV}{\Delta m^2} = \frac{\pm 2\sqrt{2E} G_F n_e}{\Delta m^2}$

Reactor Experiment Possibilities

• Long baseline reactor experiments with O(10) KTons of liquid scintillator requiring very good energy resolution

*X. Li, Windows on the Universe 2013

Reactor Neutrinos

- Proposed reactor + liquid scintillator experiments
- Neutrino ordering gives a modulation of solar oscillation parameters in reactor long-baselines

*X. Li, Windows on the Universe 2013

**J.S. Park, International Workshop on "RENO-50" 2013

Reactor Neutrinos

**J.S. Park, International Workshop on "RENO-50" 2013

Neutrino Mass Ordering

$\underset{P(v_{\mu} \rightarrow v_{\mu}) \text{ with Travel Through the Earth - 10 GeV, 179}}{\mathsf{Neutrino}} Ordering$

$\underset{P(v_{\mu} \rightarrow v_{\mu}) \text{ with Travel Through the Earth - 10 GeV, 179}}{\mathsf{Neutrino}} Ordering$

Neutrino Mass Ordering

• Inverted/Normal ordering has up to a 20% difference in oscillation probability for specific energies and zenith angles (baselines)

Accelerator Neutrinos for Neutrino Ordering

NOvA

- First results released in early August
- Two multivariate v_e selectors LID & LEM
 - LID selects 6 events while
 LEM selects 11 (includes the
 6 LID selected events)
- Ordering(hierarchy) and CP-value are intrinsically coupled for long baseline experiments

Future Atmospheric Experiments

India-Based Neutrino Observatory (INO) Oscillation Research with Cosmics in the Abyss (ORCA)

Precision IceCube Next Generation Upgrade (PINGU)

Precision IceCube Next Generation Upgrade (PINGU)

- Use existing and familiar technology to infill lceCube/DeepCore
- Improve rejection of cosmic ray muon background

Letter of Intent - arXiv:1401.2046

Neutrino Ordering w/ No Magnet

 INO has magnet to separate neutrinos from anti-neutrinos, but PINGA and ORCA do not

Neutrino Ordering w/ No Magnet

 INO has magnet to separate neutrinos from anti-neutrinos, but PINGA and ORCA do not

Neutrino Mass Ordering by Eye

^{*}K. Clark, ICRC2015

Bottom Line for PINGU

*T. Arlen WIN2015

Global Combination

Conclusion

- Neutrino oscillation is confirmed laboratory signal for Beyond Standard Model physics that requires more investigation than the measurement of only 3 angles and 1 cp-phase
- Neutrino mass ordering is a major remaining target with an active current and future experimental program

Backup

• Direct measure of U_{τ_3}

• Direct measure of U_{τ_3}

- Direct measure of U_{τ_3}
- Energy and zenith angle excess in cascade channel
- PINGU plots currently use same initial Boosted
 Decision Tree as NMH, but secondary selection for `cascades'

- Direct measure of U_{τ_3}
- Energy and zenith angle excess in cascade channel
- PINGU plots currently use same initial Boosted
 Decision Tree as NMH, but secondary selection for `cascades'

^{*}J.P.A.M. de André, NuFact 2014

Measuring v_{τ} Appearance

• High statistics allow possibility to measure

Measuring v_{τ} Appearance

• High statistics allow possibility to measure

Measuring v_{τ} Appearance

• High statistics allow possibility to measure

INO-ICAL

- Magnetized Iron
 Calorimeter (ICAL)
- Underground lab in the Theni district
- 3 modular 17 kton pieces
 - 14.4m in height x 16m length x 16m width
 - 1.5 Telsa in central region
 - 5.6cm steel w/ gap for RPC
- Resistive plate chambers
- 52 kton

ORCA

- 115 vertical lines at KM3NeT-Fr site in Mediterranean
- 6-7 strings in ORCA configuration are funded as Phase 1
- Pursuing phase 1.5 with 115 lines at French KM3NeT site which would be deployed by 2019

ORCA Cosmic Ray Muon Background

- ORCA has no current plans for an instrumented veto
- Use topological and reconstruction cuts for removal

^{*}U. Katz, 1402.1022

ORCA Preliminary Sensitivity

- Early estimate of significance
- On-going work to include more realistic Monte Carlo physics, systematics assessment, include background, geometry optimization, etc.

ORCA sensitivity (PRELIMINARY)

Mton × years

Years of ORCA proposed detector operation (115 strings, 18 DOMs/string)