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CLIC Detector and Physics (CLICdp)

Light-weight collaboration structure
No engagements, on best-effort basis

With strong links to ILC

clicdp.web.cern.ch

CLICdp: 26 institutes

Focus of CLIC-specific studies on:
Physics prospects and simulation studies

Detector optimisation + R&D for CLIC

Timeline:
2008: New start of Detector and Physics studies

Using ILC detectors as a starting point

Initial aim: CLIC Conceptual Design Report

2012: CLICdp was set up

2012: CLIC Conceptual Design Report published

2012/2013: Input to European strategy process

2015: Developed new detector concept

2018/19: Decision → update of European strategy
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CLIC Accelerator
Drive Beam Generation

• Generation of high current (100 A) drive beam with delay loop
and combiner rings
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CLIC Accelerator

Main Beam Generation

• Need small emittance main beam to achieve large luminosity
• Generation and conservation of small emittance
• Alignment and stabilisation of accelerator components
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CLIC Accelerator

Main Beam Accelerator

• Drive beam deceleration: Power Extraction and Transfer
• Two beam acceleration: Transfer RF from drive to main beam
• Main linac gradient: Accelerating structures/Break down rate
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CLIC Accelerator

Beam Delivery System and Interaction Region

• Final focus magnets
• Very stringent requirements for alignment and stabilisation
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CLIC Accelerator
• Operated at room
temperature

• Gradient: 100 MV/m
• Deflection of particles by
other bunch → synchrotron
radiation

• Energy loss leads to
luminosity spectrum

CLIC 3 TeV

L [cm−2s−1] 5.9 × 1034

Rep rate [Hz] 50
Duty cycle 0.00078%
σx ,y [nm] 45 × 1
σz [µm] 44

156 ns 20 ms

0.5 ns

CLIC: trains at 50 Hz, 1 train = 312 bunches

Has large impact on detector requirements
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CLIC Energy Stages
CLIC would be implemented in several energy stages

Current scenario:
Stage 1: 500 fb−1 @ 350/380 GeV
Precision SM Higgs and top physics
Stage 2: 1.5 ab−1 @ 1.4 TeV:
BSM physics, rare Higgs processes
Stage 3: 2 ab−1 @ 3 TeV :
BSM physics, rare Higgs processes

Each stage corresponds to 4-5 years [GeV]s
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Flexibility!
Strategy can be adapted to possible LHC discoveries at 13 TeV!
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Higgs Measurements
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Higgsstrahlung: e+e− → ZH
• Z → ℓ+ℓ−, Higgs identified from recoil
• model-independent determination of
Higgs mass and gHZZ (uncertainty ∼ 2%)
• Z → qq
• selection ensures model-independent
determination of gHZZ (uncertainty ∼ 0.9%)
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• Combined uncertainty ∼ 0.8%
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Higgs Measurements
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WW Fusion: e+e− → Hνeνe
• σ ∝ log s dominant > 450 GeV
• 3 TeV access to H → cc and rare Higgs
decays like H → µ+µ−

• Model independent Higgs width

ttH Production: e+e− → ttH
• Sensitive to top Yukawa coupling
• Peaks 800 GeV measured @1.4 TeV
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Higgs Measurements
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Double Higgs production
• e+e− → ZHH max. @600 GeV
• e+e− → HHνeνe
• Only 225 (1200) HHνeνe events at 1.4
(3) TeV
• High luminosity and high energy crucial
• Sensitive to Higgs self-coupling and the
quartic coupling
• quartic coupling gHHWW (∼ 3%) and
self-coupling λ (∼ 12%)
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Higgs Measurements Summary
Lepton collider allows to measure Higgs properties with high precision
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• Model independent extraction only at lepton colliders
• Due to model independent measurement of gHZZ
• Many couplings measured with ∼ 1% precision
• Higgs width extracted with 5-3.5% precision
• Model dependent fits can achieve precision below 1%, strongly
dependent on fit assumptions
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Top Pair Production Threshold
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CLIC

• Measure tt production at different Ecms
around threshold

• Cross section distorted by ISR and
Luminosity Spectrum

• Combined with selection efficiency and
background contamination

• Precision on 1S mass: ∼ 50 MeV
• Theoretical uncertainty ∼ 10 MeV
when transforming the measured 1S
mass to the MS mass scheme

• Precision at the LHC limited to about
500 MeV
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Prospects for BSM Physics at CLIC

• Direct searches via pair-production up to kinematic limit
√

s/2
• Precision measurement of new particle masses and couplings

• In general O(1%) precision on masses and cross-sections
• Wider applicability: classify spin and quantum numbers
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Prospects for BSM Physics at CLIC
Sleptons and Gauginos

• Slepton signature very clean: leptons
and missing energy

e+e− → µ̃+
R µ̃−

R → µ+µ−χ̃0
1χ̃

0
1

• Endpoint of spectra → mass
• Slepton mass precision < 1% for
sleptons below 1 TeV

• Chargino and neutralino → 4 jets
and EMiss
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Prospects for BSM Physics at CLIC
Heavy Higgs Bosons

• Degenerate in mass → complex final state, heavy flavour jets
e+e− → HA → bbbb
e+e− → H+H− → tbbt

• Separation requires heavy-flavour tagging (benchmark for
detector optimisation)

• Precision of 0.3% on heavy Higgs masses
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From Physics Aims to Detector Needs
• Momentum resolution:

Higgs recoil, H → µµ or ℓ from BSM
σ(pT )

p2
T

∼ 2 × 10−5 GeV2

• Jet energy resolution
W /Z/h di-jet separation
σ(E)

E ∼ 3.5 − 5%
for E = 1000 − 50 GeV

• Impact parameter resolution
b/c tagging, Higgs couplings

σrϕ =
√

a2 + b2 · GeV/(p2 sin3 θ)
with a = 5 µm and b = 15 µm

• Angular coverage
lepton identification, very forward electron tagging
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Vertex R&D
• 3 µm point accuracy → 25 × 25 µm2 pixels and 10 ns timing
• Low material budget → 0.2%X0 per detection layer
• Low-power design, power pulsing → 50 mW cm−2

• Air cooling
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Vertex R&D
• CLICpix first pixel chip in 65
nm technology
◦ Collaboration with LHC

upgrades (RD53)

• Two lines of utilization
studied:

1. Capacitively coupled to active
sensor

CCPDv3 pad

CLICpix padCLICpix via

via shielding pad shieldingCLICpix

CCPDv3

2. Bump bonded to planar
sensor

Planar Sensor 14OK
● On hit map can see weak signal but not 

as low as 43W

● Some correlation with the images, a 
weak part in the top left

● But do not see a reason for the weak 
signal in the bottom left 

Vertex Meeting 26/08/2015                   Characterisation of CLICpix planar sensors               11
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Vertex R&D

• Option 1:
◦ HV-CMOS active sensor with two-stage amplifier in each pixel
◦ Capacitively coupled to readout
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◦ 99.9% hit efficiency achieved in beam

• Option 2:
◦ Successfully bump bonded and tested in beam two weeks ago
◦ Successfully operated device → results at future conferences
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Calorimetry R&D

• R&D in CALICE collaboration
• Jet energy resolution goal 3.5% above

100GeV → high-granularity sampling
calorimeters
→ readout cell size of few cm2

• CALICE test beam experiments +
analysis:
◦ Electromagnetic/Hadronic

calorimeters with: scintillator, silicon
or gas

◦ W and Fe as absorbers
◦ Analogue and digital readout

Example: Scintillator tiles+SiPM

CALICE test beam
experiments

Scintillator (20mm×20mm)
SiPM

Scintillator tile

Support
structure

Lab setup
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New CLIC Detector Concept

• R&D + MC analysis → new detector concept
• New concept and simulation SW chain being developed

• B Field of 4 T
• Vertex detector: 3 double
layers

• Silicon tracker: r = 1.5 m
• ECal (silicon + W) with 25
layers (23X0)

• HCal (analog + Fe) with 60
layers (7.5λ)

• Precise timing for background
◦ 10 ns stamping for tracks
◦ 1 ns accuracy for calo. cluster
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Summary and Conclusions
• Well-established physics programme
• Higgs physics:

◦ model independent measurements
◦ precision measurements and rare decays (high statistics)
◦ top Yukawa coupling and Higgs self-coupling

• BSM physics
◦ direct searches possible up to the kinematic limit
◦ mass measurements of BSM particles up to %-level precision

• Precision top physics
• Very active R&D programme ongoing
• The CLIC technology has been demonstrated in large
scale-tests
◦ No show stoppers identified
◦ CLIC is an available option for CERN after the LHC
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BACKUP
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CLIC Strategy and Objectives
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CLIC Layout
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