4th International Conference on New Frontiers in Physics Kolymbari, 23rd-30th August, 2015

Recent Results from the ATLAS Experiment

Farès Djama (CPPM Marseille) On behalf of the ATLAS Collaboration

Outlook

2

- 0) ATLAS and Run 1 Data
- I) Higgs Boson Physics
- II) Top physics
- III) Search for Supersymmetry
- IV) Electroweak measurements
- V) QCD measurement
- VI) 2015: Early preliminary results

0) ATLAS and Run 1 Data

But this is a Run 2 event...

ICNFP 2015

F. Djama

The ATLAS Detector in Run 1

- ATLAS experiment designed as a multipurpose detector, able to precisely reconstruct all kind of "objects" and measure their kinematics.
- These "objects" are electrons, muons, taus, photons, hadronic jets, heavy flavour, isolated hadrons and missing transverse energy.
- ATLAS trigger system uses a large variety of objects with thresholds as low as possible and a DAQ system able to record events up to a rate of 1 kHz.
- During Run 1, ATLAS could optimally exploit the wonderful potential offered by the LHC.
- The Higgs-Englert-Brout boson discovered.
- More than 450 publications on a large variety of particle physics measurements and searches.
- This talk: recent results of Run 1 and early preliminary results from Run 2.
- It will be of course a selection. Sorry if your favourite channel or analysis is not shown.

Data Taken in Run 1

- A total of 24.9 fb⁻¹ recorded in good conditions at p-p center of mass energies of 7 and 8 TeV.
- With an overal efficiency of 93.5 %.

I) Higgs Boson Physics

- Since the Higgs boson discovery, efforts are put to test the Higgs hypothesis of the new particle.
 - This means measurement of its spin, couplings, and width.
 - Looking for not yet observed decays.
 - Looking for rare production and decay modes.
 - Lot of efforts put to improve the precision of the Higgs mass.

See plenary talk by X. Chen

Higgs Boson Mass

F. Djama

9

Spin and Parity Tests

See talk by M. Queitsch-Maitland

- All studies support the 0^+ hypothesis.
- Other hypothesis ruled out at 99.9 % CL

Measurements of Higgs Couplings

- Fits in the so called κ framework.
- Shown here: Global coupling fits assuming universal couplings for fermions (κ_F) and bosons (κ_V).
- No BSM signal so far (under a few assumptions).

See talk by N. Lu

arXiv.1507.04548

II) Top Physics

13

- Heaviest known particle: Specific role in electroweak symmetry breaking ?
- Top quark decays before hadronization: Top properties measurement.
- LHC: a copious source of top quarks: More than 5 M t-t pairs produced during Run 1.

See plenary talk by A. Onofre

Run: 267073 Event: 279124678 2015-06-05 02:24:03 CEST

Single-top candidate from 2015

Cross Section Measurement

Measured cross section of t-t pairs and single-top production at \sqrt{s} = 7 and 8 TeV

Measurement of Top Mass

See talk by G. Barone

- Top quark mass: Already the best known quark mass.
- ATLAS measurement from different channels are consistent.
- And consistent with world and Tevatron combinations.

- <u>arXiv.1307.3536</u>
- The measured top mass does not favor the stability of the vacuum up to the Planck scale.
- A new Symmetry needed around 10^{10} - 10^{12} GeV ?
- Mass measurement techniques are calibrated to the mass in MC, which is not clearly related to a theoretically well defined mass.
- Exploit the dependence of gluon radiation on the top mass to extract the "pole" top mass from tt +1 jet events.

Top Physics: A Tool to assess SM and look for signals BSM

- A significance of 5 and 4.2 σ over the background only hypothesis for ttW and ttZ respectively.
- Tests of top couplings.
- Well within NLO QCD predictions.

- Charge asymmetry: Induced from NLO corrections to $q\bar{q}$ and qg initiated production.
- Measurement based on $t\bar{t}$ pair production and leptonic days of the W.
- Results in agreement with SM prediction: top quark is preferentially emitted in the direction of the quark.

See talk by F. Fassi for searches for BSM signals

III) Search for SuperSymmetry

19

- Most popular BSM theory.
- Large number of searches, using all the variety of objects reconstructed by ATLAS.
- Large number of parameters: Searches interpreted within specific SUSY versions: pMSSM, mSUGRA, GMSB...

See plenary talk by E. S. Kuwertz

Third Generation Squarks in Run 1

- Third generation squarks required to be light (~ 1 TeV) to protect the Higgs mass.
- Several scenarii have been investigated.
- Below: Summary of ATLAS Run 1 searches for stop pairs if only LSP is involved in stop decay (left) and if only LSP and the first chargino are involved (right), assuming that the chargino mass is two times the LSP one.

See talk by H. Ren

Summary of ATLAS Searches of EWK production of charginos and neutralinos, using several decay modes (100 % branching ratio is assumed for each mode).

Excluded range of lifetime as a function of chargino mass for charginos, using the ionisation rate measured by the Pixel Detector: lonisation rate of a heavy (non relativistic) charged particle is high and depends on its mass.

Interpretation of Search Limits

- Combining statistically independent channels (both in signal and control regions) to constrain SUSY models.
- Several SUSY models have been studied.
- Shown below: mSUGRA with conserved (left) and violated (right) R-parity, with fixed tan $\beta = 30$, $A_0 = -2 m_0$, and $\mu > 0$.

AILAS JUST Sedicites - 95% CL LOWER LIMITSAILASAILASStatus: July 2015 $\sqrt{s} = 7.8$ TeV										
	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb	Mass limit	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	Reference	
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ (compressed) \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ (compressed) \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q (\mathcal{E} \mathcal{L} (\mathcal{V} / \mathcal{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{+} \rightarrow q q \mathcal{W}^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \mathcal{Q} (\mathcal{L} / \mathcal{V} / \mathcal{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \mathcal{Q} (\mathcal{L} / \mathcal{V} / \mathcal{V}) \tilde{\chi}_{1}^{0} \\ \tilde{g}\mathcal{M} (biso NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino-hino NLSP) \\ GGM (higgsino NLSP) \\ GFavitino LSP \\ \end{array} $	$\begin{array}{c} 0\text{-3 } e, \mu/1\text{-2 }\tau \\ 0 \\ \text{mono-jet} \\ 2 e, \mu \ (\text{off-}Z) \\ 0 \\ 0 \text{-1 } e, \mu \\ 2 e, \mu \\ 1\text{-2 }\tau + 0\text{-1 }\ell \\ 2 \gamma \\ \gamma \\ \gamma \\ 2 e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets 2 jets 2 jets 2 jets 2 jets 2 jets	 b Yes Yes Yes	20.3 20.3 20.3 20.3 20 20 20.3 20.3 20.3	د تر به ت به تر به ت به تر به تر ب م تر به ت م تم ما ما مال	■ 1.33 TeV 1.26 TeV 1.26 TeV 1.32 TeV 1.29 TeV 1.3 TeV 1.25 TeV ■V eV	$\begin{array}{l lllllllllllllllllllllllllllllllllll$	1507.05525 1405.7875 1507.05525 1503.03290 1405.7875 1507.05525 1501.03555 1407.0603 1507.05493 1507.05493 1507.05493 1507.05493	
3 rd gen. ẽ med.	$\begin{array}{l} \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0 \\ \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0 \\ \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0 \\ \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow b \bar{t} \tilde{\chi}_1^+ \end{array}$	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1		1.25 TeV 1.1 TeV 1.34 TeV 1.3 TeV	$\begin{array}{l} m(\tilde{\chi}^0_1){<}400 \mbox{ GeV} \\ m(\tilde{\chi}^0_1){<}350 \mbox{ GeV} \\ m(\tilde{\chi}^0_1){<}400 \mbox{ GeV} \\ m(\tilde{\chi}^0_1){<}300 \mbox{ GeV} \end{array}$	1407.0600 1308.1841 1407.0600 1407.0600	
3 rd gen. squarks direct production	$ \begin{array}{c} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{+} \\ \tilde{r}_{1}\tilde{r}_{1}, \tilde{i}_{1} \rightarrow b\tilde{\chi}_{1}^{+} \\ \tilde{r}_{1}\tilde{r}_{1}, \tilde{i}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}, \tilde{i}_{1} \rightarrow t\tilde{\chi}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1}, \tilde{r}_{1} \rightarrow c\tilde{\chi}_{1}^{0} \\ \tilde{r}_{1}\tilde{r}_{1} (natural GMSB) \\ \tilde{r}_{2}\tilde{r}_{2}, \tilde{r}_{2} \rightarrow \tilde{r}_{1} + Z \end{array} $	0 2 e, µ (SS) 1-2 e, µ 0-2 e, µ 0 r 2 e, µ (Z) 3 e, µ (Z)	2 <i>b</i> 0-3 <i>b</i> 1-2 <i>b</i> 0-2 jets/1-2 nono-jet/ <i>c</i> -t 1 <i>b</i> 1 <i>b</i>	Yes Yes Ves Ves ag Yes Yes Yes	20.1 20.3 1.7/20.3 20.3 20.3 20.3 20.3 20.3	1 100-620 GeV 275-440 GeV 1 10-167 GeV 230-460 GeV 1 90-191 GeV 90-240 GeV 1 90-240 GeV 2 150-580 GeV 2 290-600 GeV		$\begin{split} &m(\tilde{k}_{1}^{0}){<}{\texttt{s0}} \operatorname{GeV} \\ &m(\tilde{k}_{1}^{+}){=}2 \; m(\tilde{k}_{1}^{0}) \\ &m(\tilde{k}_{1}^{+}){=}2 \; m(\tilde{k}_{1}^{0}), \; m(\tilde{k}_{1}^{0}){=}{\texttt{55}} \operatorname{GeV} \\ &m(\tilde{k}_{1}^{0}){=}{\texttt{1}} \operatorname{GeV} \\ &m(\tilde{k}_{1}^{0}){=}{\texttt{15}} \operatorname{GeV} \\ &m(\tilde{k}_{1}^{0}){>}{\texttt{15}} \operatorname{GeV} \\ &m(\tilde{k}_{1}^{0}){>}{\texttt{150}} \operatorname{GeV} \\ &m(\tilde{k}_{1}^{0}){<}{\texttt{200}} \operatorname{GeV} \end{split}$	1308.2631 1404.2500 1209.2102, 1407.0583 1506.08616 1407.0608 1403.5222 1403.5222	
EW direct	$ \begin{array}{l} \tilde{\ell}_{1,\mathbf{k}}\tilde{\ell}_{L,\mathbf{k}}, \tilde{\ell} \rightarrow \tilde{\ell}\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{0}^{0} \rightarrow \tilde{\ell}_{1}\nu\tilde{\ell}_{1}(\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{0}^{0} \rightarrow \tilde{W}\tilde{\chi}_{1}^{0}\tilde{\chi}\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{+}\tilde{\chi}_{0}^{0} \rightarrow \tilde{W}\tilde{\chi}_{1}^{0}h\tilde{\chi}_{1}^{-}, h \rightarrow b\tilde{b}/WW/\tau \\ \tilde{\chi}_{2}^{+}\tilde{\chi}_{0}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R}\ell \\ \end{array} $ GGM (wino NLSP) weak prod	2 e,μ 2 e,μ 2 τ 3 e,μ 2-3 e,μ τ/γγ e,μ,γ 4 e,μ 1 e,μ + γ	0 0 - 0-2 jets 0-2 b 0	Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	90-325 GeV 140-465 GeV 140-465 GeV 100-350 GeV 1,x ⁰ 700 GeV 1,x ⁰ 420 GeV 250 GeV 250 GeV 124-361 GeV		$\begin{split} & m(\tilde{k}_{1}^{0}){=}0 \text{ GeV } \\ & m(\tilde{k}_{1}^{0}){=}0 \text{ GeV } (m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{\ell}_{1}^{+}){+}m(\tilde{k}_{1}^{0})) \\ & m(\tilde{k}_{1}^{0}){=}0 \text{ GeV }, m(\tilde{\epsilon},\tilde{\nu}){=}0.5(m(\tilde{k}_{1}^{+}){+}m(\tilde{k}_{1}^{0})) \\ & m(\tilde{k}_{1}^{+}){=}m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0}){=}0, m(\tilde{\epsilon},\tilde{\nu}){=}0.5(m(\tilde{k}_{1}^{+}){+}m(\tilde{k}_{1}^{0})) \\ & m(\tilde{k}_{1}^{+}){=}m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0}){=}0, sleptons decoupled \\ & m(\tilde{k}_{1}^{+}){=}m(\tilde{k}_{2}^{0}), m(\tilde{k}_{1}^{0}){=}0, sleptons decoupled \\ & m(\tilde{k}_{2}^{0}){=}m(\tilde{k}_{2}^{0}){+}m(\tilde{k}_{1}^{0})) \\ & c\tau{<}1 \text{ mm} \end{split}$	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294, 1402.7029 1501.07110 1405.5086 1507.05493	
Long-lived particles	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\lambda}$ Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\lambda}$ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau$ GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$ $\tilde{g}_{\tilde{g}}, \tilde{\chi}_1^0 \rightarrow eev/e\mu\nu/\mu\mu\nu$ GGM $\tilde{g}_{\tilde{g}}, \tilde{\chi}_1^0 \rightarrow Z\tilde{G}$	ζ_1^+ Disapp. trk ζ_1^+ dE/dx trk 0 trk $c(e, \mu)$ 1-2 μ 2 γ displ. $ee/e\mu/\mu$ displ. vtx + je	1 jet - 1-5 jets - - - τ ts -	Yes Yes - - Yes - -	20.3 18.4 27.9 19.1 19.1 20.3 20.3 20.3	270 GeV 482 GeV 832 Ge 537 GeV 435 GeV	V 1.27 TeV 1.0 TeV 1.0 TeV	$\begin{split} &m(\tilde{\chi}_{1}^{+})\text{-}m(\tilde{\chi}_{1}^{0})\!\sim\!160 \; MeV, \; \tau(\tilde{\chi}_{1}^{+})\!=\!0.2 \; ns \\ &m(\tilde{\chi}_{1}^{+})\text{-}m(\tilde{\chi}_{1}^{0})\!\sim\!160 \; MeV, \; \tau(\tilde{\chi}_{1}^{+})\!<\!15 \; ns \\ &m(\tilde{\chi}_{1}^{0})\!=\!100 \; GeV, \; 10\; \mus\!<\!\tau(\tilde{g})\!<\!1000 \; s \\ &10\!<\!tan\beta\!<\!50 \\ &2\!<\!\tau(\tilde{\chi}_{1}^{0})\!<\!3\;ns, \;SPS8\; model \\ &7\;<\!\tau(\tilde{\chi}_{1}^{0})\!<\!740\; mm, \; m(\tilde{g})\!=\!1.3 \; TeV \\ &6\;<\!c\tau(\tilde{\chi}_{1}^{0})\!<\!480\; mm, \; m(\tilde{g})\!=\!1.1 \; TeV \end{split}$	1310.3675 1506.05332 1310.6584 1411.6795 1411.6795 1409.5542 1504.05162 1504.05162	
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau\\ Bilinear \ RPV \ CMSSM \\ \widetilde{\chi}^+_1\widetilde{\chi}^1, \widetilde{\chi}^+_1 \rightarrow W\widetilde{\chi}^+_1, \widetilde{\chi}^+_1 \rightarrow ev\widetilde{v}_{\mu}, e\mu\widetilde{v}\\ \widetilde{\chi}^+_1\widetilde{\chi}^1, \widetilde{\chi}^+_1 \rightarrow W\widetilde{\chi}^+_1, \widetilde{\chi}^+_1 \rightarrow ev\widetilde{v}\\ \widetilde{g}_{\tilde{s}}, \widetilde{g} \rightarrow qq\\ \widetilde{g}_{\tilde{s}}, \widetilde{g} \rightarrow q\bar{\chi}^0_1, \widetilde{\chi}^0_1 \rightarrow qqq\\ \widetilde{g}_{\tilde{s}}, \widetilde{g} \rightarrow q\bar{\chi}^0_1, \tau_1 \rightarrow bs\\ \widetilde{r}_1\widetilde{r}_1, \widetilde{r}_1 \rightarrow bs\\ \widetilde{r}_1\widetilde{r}_1, \widetilde{r}_1 \rightarrow b\ell \end{array} $	$\begin{array}{cccc} r & e\mu, e\tau, \mu\tau \\ & 2 \ e, \mu \ (\text{SS}) \\ & \tilde{v}_e & 4 \ e, \mu \\ & \tilde{v}_\tau & 3 \ e, \mu + \tau \\ & 0 \\ & 2 \ e, \mu \ (\text{SS}) \\ & 0 \\ & 2 \ e, \mu \end{array}$		- Yes Yes - - Yes - -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	- g - g - t - f - f - f - f - f - f - f - f	1 1.35 TeV GeV eV eV 1.0 TeV	$\begin{array}{c} \mathcal{A}^{r}_{311} = 0.11, \ \mathcal{A}_{132/133/233} = 0.07 \\ m(\tilde{q}) = m(\tilde{g}), \ c\tau_{LSP} < 1 \ mm \\ m(\tilde{\chi}^0_1) > 0.2 \times m(\tilde{\chi}^+_1), \ \mathcal{A}_{121} \neq 0 \\ m(\tilde{\chi}^0_1) > 0.2 \times m(\tilde{\chi}^+_1), \ \mathcal{A}_{133} \neq 0 \\ BR(t) = BR(b) = BR(c) = 0\% \\ m(\tilde{\chi}^0_1) = 600 \ \text{GeV} \\ \end{array}$	1503.04430 1404.2500 1405.5086 1405.5086 1502.05686 1502.05686 1404.250 ATLAS-CONF-2015-026 ATLAS-CONF-2015-015	
Othe	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	490 GeV		$m(\tilde{\chi}_1^0)$ <200 GeV	1501.01325	
					10	-1	1	Mass scale [TeV]		

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

23

- -

ATLAS SUSY Searches* - 95% CL Lower Limits ATLAS Prelim									
01	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	∫ <i>L dt</i> [fb ⁻	¹] Mass limit	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8 \text{ TeV}$	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA(CMSSM\\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{\tilde{U}} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{\tilde{U}} (\text{compressed})\\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{\tilde{U}} (\text{compressed})\\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{\tilde{U}} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q \tilde{\chi}_{1}^{\tilde{U}} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q \tilde{\chi}_{1}^{\pm} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{s}, \tilde{s} \rightarrow q q (\ell \ell \ell \nu / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g} MSB (\tilde{\ell} NLSP) \\ GGM (hion NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino-bino NLSP) \\ GGM (higgsino NLSP) \\ GGM (higgsino NLSP) \\ Gravitino LSP \end{array} $	$\begin{array}{c} 0\text{-3 } e, \mu/1\text{-2 } \tau \\ 0 \\ \text{mono-jet} \\ 2 \ e, \mu \ (\text{off-}Z) \\ 0 \\ 0 \text{-1 } e, \mu \\ 2 \ e, \mu \\ 1\text{-2 } \tau + 0\text{-1 } \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \\ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 0-3 jets 0-2 jets 2 jets 2 jets 2 jets mono-jet	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20 20 20 20.3 20.3 2	q r <td>1.33 TeV 1.26 TeV 1.32 TeV 1.32 TeV 1.3 TeV 1.29 TeV 1.3 TeV 1.25 TeV</td> <td>$\begin{array}{l} \textbf{8 TeV} & \textbf{m}(\tilde{g}) = \textbf{m}(\tilde{g}) \\ & \textbf{m}(\tilde{\xi}_{1}^{0}) = 0 \ \text{GeV}, \ \textbf{m}(1^{\text{st}} \text{gen}, \tilde{q}) = \textbf{m}(2^{\text{sd}} \text{gen}, \tilde{q}) \\ & \textbf{m}(\tilde{\xi}_{1}^{0}) = 0 \ \text{GeV} \\ & \textbf{m}(\tilde{\xi}_{1}^{0}) < 0 \ \text{GeV} \\ & \textbf{m}(\tilde{\xi}_{1}^{0}) < 0 \ \text{GeV} \\ & \textbf{m}(\tilde{\xi}_{1}^{0}) < 0 \ \text{SeO} \ \text{GeV}, \ cr(\text{NLSP}) < 0.1 \ \text{mm}, \ \mu > 0 \\ & \textbf{m}(\tilde{\xi}_{1}^{0}) > 430 \ \text{GeV} \\ & \textbf{m}(\tilde{G}) > 1.8 \times 10^{-4} \ \text{eV}, \ \textbf{m}(\tilde{g}) = \textbf{m}(\tilde{g}) = 1.5 \ \text{TeV} \\ \end{array}$</td> <td>1507.05525 1405.7875 1507.05525 1503.03290 1405.7875 1507.05525 1501.03555 1407.0603 1507.05493 1507.05493 1507.05493 1507.05493 1503.03290 1502.01518</td>	1.33 TeV 1.26 TeV 1.32 TeV 1.32 TeV 1.3 TeV 1.29 TeV 1.3 TeV 1.25 TeV	$ \begin{array}{l} \textbf{8 TeV} & \textbf{m}(\tilde{g}) = \textbf{m}(\tilde{g}) \\ & \textbf{m}(\tilde{\xi}_{1}^{0}) = 0 \ \text{GeV}, \ \textbf{m}(1^{\text{st}} \text{gen}, \tilde{q}) = \textbf{m}(2^{\text{sd}} \text{gen}, \tilde{q}) \\ & \textbf{m}(\tilde{\xi}_{1}^{0}) = 0 \ \text{GeV} \\ & \textbf{m}(\tilde{\xi}_{1}^{0}) < 0 \ \text{GeV} \\ & \textbf{m}(\tilde{\xi}_{1}^{0}) < 0 \ \text{GeV} \\ & \textbf{m}(\tilde{\xi}_{1}^{0}) < 0 \ \text{SeO} \ \text{GeV}, \ cr(\text{NLSP}) < 0.1 \ \text{mm}, \ \mu > 0 \\ & \textbf{m}(\tilde{\xi}_{1}^{0}) > 430 \ \text{GeV} \\ & \textbf{m}(\tilde{G}) > 1.8 \times 10^{-4} \ \text{eV}, \ \textbf{m}(\tilde{g}) = \textbf{m}(\tilde{g}) = 1.5 \ \text{TeV} \\ \end{array} $	1507.05525 1405.7875 1507.05525 1503.03290 1405.7875 1507.05525 1501.03555 1407.0603 1507.05493 1507.05493 1507.05493 1507.05493 1503.03290 1502.01518
3 rd gen. <u>§</u> med.	$\begin{array}{l} \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow b \tilde{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \; \tilde{g} \rightarrow b \tilde{t} \tilde{\chi}_{1}^{1} \end{array}$	0 0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 <i>b</i> 7-10 jets 3 <i>b</i> 3 <i>b</i>	Yes Yes Yes Yes	20.1 20.3 20.1 20.1	ξ ξ 1 ξ ξ	1.25 TeV I.1 TeV 1.34 TeV 1.3 TeV	$\begin{array}{l} m(\tilde{x}_{1}^{0}){<}400\text{GeV} \\ m(\tilde{x}_{1}^{0}){<}350\text{GeV} \\ m(\tilde{x}_{1}^{0}){<}400\text{GeV} \\ m(\tilde{x}_{1}^{0}){<}300\text{GeV} \end{array}$	1407.0600 1308.1841 1407.0600 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{k}_1^0 \\ \tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{k}_1^n \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{k}_1^n \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{k}_1^n \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{k}_1^0 \text{ or } t \tilde{k}_1^0 \\ \tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{k}_1^0 \\ \tilde{t}_1 \tilde{t}_1 \text{ (ndural GMSB)} \\ \tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z \end{split} $	0 2 e, µ (SS) 1-2 e, µ 0-2 e, µ (0 m 2 e, µ (Z) 3 e, µ (Z)	2 b 0-3 b 1-2 b 0-2 jets/1-2 nono-jet/c-t 1 b 1 b	Yes Yes Yes b Yes Ye Ye	20.1 20.3 4.7/20.3 20.3 20.3	b1 100-620 GeV b1 275-440 GeV c1 110-167 GeV c30-460 GeV 230-460 GeV c1 90-191 GeV 210-700 GeV c1 90-240 GeV 210-700 GeV		$\begin{split} & m(\tilde{k}_{1}^{0}){<}90 \text{GeV} \\ & m(\tilde{k}_{1}^{-}){=}2 m(\tilde{k}_{1}^{0}) \\ & m(\tilde{k}_{1}^{-}){=}2 m(\tilde{k}_{1}^{0}), m(\tilde{k}_{1}^{0}){=}55 \text{GeV} \\ & m(\tilde{k}_{1}^{0}){=}1 \text{GeV} \\ & m(\tilde{r}_{1}){-}m(\tilde{k}_{1}^{0}){<}85 \text{GeV} \\ & & \text{GeV} \\ \end{split}$	1308.2631 1404.2500 1209.2102, 1407.0583 1506.08616 1407.0608 1403.5222 1403.5222
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \ell \nu(\ell \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu}) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow \ell_{L} \nu \tilde{\ell}_{L} (\ell (\tilde{\nu} \nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell (\tilde{\nu} \nu) \\ \tilde{\chi}_{1}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{b} / W W / \tau \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{2}^{0} \tilde{\chi}_{2}^{0} \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}, h \rightarrow b \tilde{b} / W W / \tau \\ \tilde{\chi}_{2}^{+} \tilde{\chi}_{3}^{0} \\ \tilde{\chi}_{2}^{-} \tilde{\chi}_{3}^{-} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell} \tilde{\chi}_{1}^{0} \\ \end{array} $	2 e, μ 2 e, μ 2 τ 3 e, μ 2-3 e, μ τ/γγ e, μ, γ 4 e, μ 1 e, μ + γ	0 0 0-2 jets 0-2 b 0	Ye Ye Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3	D EVIDENCE SO $\vec{x}_{1}^{i}, \vec{x}_{2}^{o}$ 700 GeV $\vec{x}_{1}^{i}, \vec{x}_{2}^{o}$ 420 GeV $\vec{x}_{2,3}^{i}, \vec{x}_{2}^{o}$ 250 GeV \vec{w} 124-361 GeV	• [a]	$ \begin{array}{ c c c c c } & \bigvee & $	1403.5294 1403.5294 1407.0350 1402.7029 1403.5294,1402.7029 1501.07110 1405.5086 1507.05493
Long-lived particles	$\begin{array}{l} \label{eq:constraints} \begin{array}{l} \mbox{Direct} \tilde{X}_1^+ \tilde{X}_1^- \mbox{prod.}, \mbox{long-lived} \tilde{X} \\ \mbox{Direct} \tilde{X}_1^+ \tilde{X}_1^- \mbox{prod.}, \mbox{long-lived} \tilde{X} \\ \mbox{Stable, stopped} \tilde{g} \mbox{R-hadron} \\ \mbox{Stable} \tilde{g} \mbox{R-hadron} \\ \mbox{Stable} \tilde{g}, \tilde{X}_1^0 {\rightarrow} \tilde{\tau}(\tilde{e}, \tilde{\mu}) {+} \pi \\ \mbox{GMSB, } \tilde{X}_1^0 {\rightarrow} \gamma \tilde{\sigma}, \mbox{long-lived} \tilde{X}_1^0 \\ \mbox{gg}, \tilde{X}_1^0 {\rightarrow} ev(e\mu\nu) \mu\mu\nu \\ \mbox{GGM} \mbox{gg}, \tilde{X}_1^0 {\rightarrow} Z \tilde{G} \end{array}$		1 jet - 1-5 jets - - - - τ - ts -	Yes Yes - - Yes -	20.3 18.4 27.9 19.1 19.1 20.3 20.3 20.3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1.27 TeV TeV TeV	$\begin{split} & m(\tilde{k}_1^n) \cdot m(\tilde{k}_1^n) \sim 160 \; MeV, \; \tau(\tilde{k}_1^\pm) = 0.2 \; ns \\ & m(\tilde{k}_1^n) \cdot m(\tilde{k}_1^n) \sim 160 \; MeV, \; \tau(\tilde{k}_1^\pm) < 15 \; ns \\ & m(\tilde{k}_1^0) = 100 \; GeV, \; 10 \; \mu s < \tau(\tilde{x}) < 1000 \; s \\ & 10 < tan\beta < 50 \\ & 2 < \tau(\tilde{k}_1^n) < 3 \; ns, \; SPS8 \; model \\ & 7 < c\tau(\tilde{k}_1^n) < 740 \; mm, \; m(\tilde{g}) = 1.3 \; TeV \\ & 6 < c\tau(\tilde{k}_1^n) < 480 \; mm, \; m(\tilde{g}) = 1.1 \; TeV \end{split}$	1310.3675 1506.05332 1310.6584 1411.6795 1411.6795 1409.5542 1504.05162 1504.05162
RPV	$ \begin{array}{l} LFV pp \rightarrow \widetilde{v}_{\tau} + X, \widetilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau \\ Bilinear \; RPV \; CMSSM \\ \widetilde{\chi}_1^+ \widetilde{\chi}_1^-, \widetilde{\chi}_1^+ \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow ee\widetilde{\nu}_{\mu}, e\mu\widetilde{\nu}, \\ \widetilde{\chi}_1^+ \widetilde{\chi}_1^-, \widetilde{\chi}_1^+ \rightarrow W \widetilde{\chi}_1^0, \widetilde{\chi}_1^0 \rightarrow \tau\tau\widetilde{\nu}_e, e\tau\widetilde{\nu}, \\ \widetilde{g}_s^*, \widetilde{g} \rightarrow qqq \\ \widetilde{g}_s^*, \widetilde{g} \rightarrow \chi_1^0, \widetilde{\chi}_1^0 \rightarrow qqq \\ \widetilde{g}_s^*, \widetilde{g} \rightarrow \chi_1^*, \widetilde{\chi}_1 \rightarrow bs \\ \widetilde{r}_1 \widetilde{r}_1, \widetilde{r}_1 \rightarrow bs \\ \widetilde{r}_1 \widetilde{r}_1, \widetilde{r}_1 \rightarrow b\ell \end{array} $	$e^{\mu,e\tau,\mu\tau} 2 e,\mu (SS) $	- 0-3 b - - 6-7 jets 6-7 jets 0-3 b 2 jets + 2 b 2 b	- Yes Yes - - Yes b - -	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3	\$\vec{v}_{+}\$ \$\vec{q}, \vec{g}\$ \$\vec{v}_{1}^{+}\$ \$\vec{v}_{1}^{+}\$ \$\vec{v}_{1}^{+}\$ \$\vec{v}_{1}^{+}\$ \$\vec{v}_{2}^{+}\$ \$\vec{v}_{2}^{+}\$ \$\vec{v}_{1}\$ \$\vec{v}_{1}\$ \$\vec{v}_{1}\$ \$\vec{v}_{1}\$ \$\vec{v}_{1}\$	1.7 1.35 TeV V TeV	$\begin{split} \textbf{TeV} & \lambda_{311}^{\prime} = 0.11, \lambda_{132/133/233} = 0.07 \\ & \textbf{m}(\tilde{q}) = \textbf{m}(\tilde{g}), c\tau_{LSP} < 1 \text{ mm} \\ & \textbf{m}(\tilde{x}_{1}^{0}) > 0.2 \times \textbf{m}(\tilde{x}_{1}^{+}), \lambda_{121} \neq 0 \\ & \textbf{m}(\tilde{x}_{1}^{0}) > 0.2 \times \textbf{m}(\tilde{x}_{1}^{+}), \lambda_{133} \neq 0 \\ & \textbf{BR}(t) = \textbf{BR}(b) = \textbf{BR}(c) = 0\% \\ & \textbf{m}(\tilde{x}_{1}^{0}) = 600 \text{ GeV} \\ & \textbf{BR}(\tilde{t}_{1} \rightarrow be/\mu) > 20\% \end{split}$	1503.04430 1404.2500 1405.5086 1405.5086 1502.05686 1502.05686 1404.250 ATLAS-CONF-2015-026 ATLAS-CONF-2015-015
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	ē 490 GeV		$m(\tilde{\chi}_{1}^{0})$ <200 GeV	1501.01325
					10	-1	1	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

IV) Electroweak Measurements

25

- LHC is a copious source of electroweak gauge bosons and their interactions (VBF, VBS).
- EW measurements are one of the tools to look beyond SM.
- Some EW process are background to searches (VV).

See plenary talk by W. Buttinger

Lepton Forward-Backward Asymmetry

See talk by N. Calace

Multi Bosons Production

- Multi boson production: Sensitive to new physics through TGC and QGC.
- Measurements interpreted as limits on anomalous (BSM) couplings.
- No BSM signal seen.

F. Djama

V) QCD Measurements

28

- QCD tested more and more in its perturbative calculations: Many measurements became sensitive to effects beyond NLO QCD.
- QCD understanding important for other measurements: PDF, underlying events.

See plenary talk by W. Buttinger

Determination of σ_{tot} with ALFA

- Proton-proton elastic differential cross section measured with ALFA stations (roman pots) is fitted and the ρ parameter is determined.
- Total cross section is computed from it using the optical theorem.

Transverse Energy-Energy Correlation

- Transverse energy-energy correlation for jets (left) and its fit with NLO QCD.
- Measured value of α_s compared to other measurements at hadron colliders.

F. Djama

Jets Measurements

See talk by N. Calace

- Jets and V+jets cross sections: Test QCD beyond leading order.
- No theoretical prediction able to describe all differential cross sections. Example given here: scalar sum of lepton + jets $P_t + E_T^{miss}$ in W+jets production:

VI) 2015: Early Preliminary Results

- LHC is delivering p-p collisions at 13 TeV.
- Main improvement in ATLAS: A fourth pixel layer, at 3.3 cm from the beam axis (the closesr layer was at 5.5 cm): The IBL.
- Many more improvements: Additional muon chambers, repairs, new analysis model, trigger upgrade...
- Next: early ATLAS results from Run 2

Insertion of the IBL into the center of ATLAS

F. Djama

33

Jet Cross Section at 13 TeV

Inelastic p-p Cross Section at 13 TeV

F. Djama

Cross section of t-t pairs production at 13 TeV

ATLAS-CONF-2015-033

450

400

350

300

250

200

150

ATLAS Preliminary

 $s = 13 \text{ TeV}, 78 \text{ pb}^{-1}$

• Data 2015

Wt

Z+jets

Diboson

☐ tī Powheg+PY

Mis-ID lepton

ICNFP 2015

Events

F. Djama

37

- Examples of "Loose Signal Regions" in SUSY searches at 13 TeV.
- Signals are magnified by factors of 10 and 100.
- Nice agreement between data and expected background.

Start of search for extra bosons at 13 TeV

Dimuon pair with an invariant mass of 881 GeV

Conclusions

- During Run 1, ATLAS has produced a large variety of results covering some of the more fundamental questions in particle physics.
- This includes searches, measurements and interpretations within alternative theories.
- The 2012 discovered particle looks really more and more like the SM Higgs boson.
- No signal spotted yet beyond the Standard Model.
- Run 2 has started successfully and ATLAS is willing to continue its effort.
- We all hope for some nice surprises from Nature...

Back up

42

F. Djama

- Main assets of ATLAS :
 - A precise tracker, able to distinguish primary vertices of a single collision as well as tracks in dense core hadronic jets.
 - A hermetic calorimeter, with angular measurement capabilities.
 - A precise, independent and high redundancy muon system.

CP-Mixing Terms in HVV ?

• Fits exclude maximal scenarii for such terms :

arXiv.1506.05669

J/ψ production at 13 TeV

Proper time of J/ψ : Prompt and heavy-flavor components Non-prompt fraction of the J/ψ as a function of its Pt.

ATLAS-CONF-2015-030

Properties of inelastic events at 13 TeV

ATLAS-CONF-2015-028

F. Djama

Search in diphoton spectrum at 13 TeV

Events / 30 GeV

10²

 $G^* \rightarrow \gamma \gamma$ selection

ATLAS Preliminary \s = 13 TeV, 78 pb

 Data
 Total background (normalised to event yield in data)

Diphoton pair with an invariant mass of 940 GeV

48