Top quark physics from run 1 of the LHC

Antonio Onofre

(antonio.onofre@cern.ch)

on behalf of the ATLAS and CMS Collaborations

4th International Conference on New Frontiers in Physics ICNFP2015, Crete, Greece, August 24th - 30th

▲冊▶▲≣▶▲≣▶ ≣ のく⊙

Outline

The phenomenology of Top Quark is Too Rich regimpossible to cover everything here Ŷ,

(Short) List of Topics Covered:

- Cross section measurements
 - *t*t
 production at the LHC
 - single top quark production
- The top quark mass
- Probing the top spin
- The $t \rightarrow bW$ decay in $t\bar{t}$ events
 - the *Wtb* vertex structure and anomalous couplings
- Top Quark Couplings to Bosons
 - V_{tb} @ LHC
 - $ttV (V = \gamma, Z, W, H)$
- Top quark beyond SM
 - FCNC processes ($tqX, X = \gamma, Z, g, H$)

The top quark

- 2015 is the top quark's 20th anniversary it was discovered by CDF and D0 in 1995 PRL74 2626-2631 (1995); PRL74 2632-2637 (1995).
- It completes the 3 family structure of the SM
 - top is the weak-isospin partner of the *b*-quark
 - spin = 1/2
 - charge = +2/3 |e|

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

1

- Top quark is the heaviest known fundamental particle $(m_t = 173.34 \pm 0.76 \text{ GeV}, \text{World comb.}(2014), arXiv:1403.4427)$
- Top decays (almost exclusively) through $t \rightarrow bW$ BR $(t \rightarrow sW) \leq 0.18\%$, BR $(t \rightarrow dW) \leq 0.02\%$
- $\Gamma_t^{SM} = 1.42 \text{ GeV}$ (including m_b , m_W , α_s , EW corrections)
 - $\tau_t = (3.29^{+0.90}_{-0.63}) \times 10^{-25}$ s (D0, PRD **85** 091104, 2012)
 - $\ll \Lambda_{QCD}^{-1} \sim (100 \text{ MeV})^{-1} \sim 10^{-23} \text{s}$ (hadronization time)

 \Rightarrow top decays before hadronization takes place

$t\bar{t}$ production at the LHC

• Production at the LHC:

 $\begin{array}{l} \sigma(t\bar{t}) = 177.3 \pm 9.9 \substack{+4.6 \\ -6.0} \text{ pb } @ \ 7 \ \text{TeV}, \quad \sigma(t\bar{t}) = 252.9 \pm 11.7 \substack{+6.4 \\ -8.6} \text{ pb } @ \ 8 \ \text{TeV}, \quad \sigma(t\bar{t}) = 832 \substack{+4.0 \\ -46} \text{ pb } @ \ 13 \ \text{TeV} \\ \text{NNLO+NNLL}, \ m_t = 172.5 \ \text{GeV} \ \text{PLB} \ \textbf{710} \ \textbf{612} \ (2012), \ \text{PRL} \ \textbf{109} \ 132001(2012), \\ \text{JHEP} \ \textbf{1212} \ 054(2012), \ \text{JHEP} \ \textbf{1301} \ 080(2013), \ \text{PRL} \ \textbf{110} \ 252004 \ (2013). \end{array}$

<日</th>< 回</th>< 回</th>

E

4/30

Cross-Section Measurements @ 7 and 8 TeV

IS significant number of precise measurements from RUN I

Antonio Onofre

Getting Precision in Differential Measurements @ 7 and 8 TeV

Antonio Onofre

Single top quark

• Single top quark production cross section @ LHC:

 Powerfull probe of V_{tb} (δV_{tb}/V_{tb} few % @ LHC) and Test of physics BSM (FCNC in *t*-channel; W' in *s*-channel)
 CMS and ATLAS results within SM expectations:

Antonio Onofre

Top quark physics from run 1 of the LHC

🥧 @ 7TeV

🥧 @ 8TeV

Top quark mass

• Complementary Approaches @ LHC:

 $t\bar{t}$ +1j: Pole Mass from Norm. Diff. σ ATLAS: arXiv:1507.01769v1 [hep-ex] 7 Jul 2015

Tevatron+LHC World Combination 4

 $\Delta m_t/m_t=0.4\%$

Probing the top quark spin

• Top Spin Correlations are a powerful test of the SM:

 \overline{tt} : top quarks are produced unpolarised but their spins are correlated in the SM \overline{tt} Different BSM predict different spin correlations, 1) and 2)

Measure angular distributions of decay products:

 $\frac{1}{\sigma} \frac{d^2 \sigma}{d[\cos(\theta_i)] d[\cos(\theta_i)]} = \frac{1}{4} [P\alpha_i \cos(\theta_i) + P\alpha_j \cos(\theta_j) + A\alpha_i \alpha_j \cos(\theta_i) \cos(\theta_j)]$

$$A = \frac{N_{like} - N_{unlike}}{N_{like} + N_{unlike}}$$

Spin analyser power of particles:

	b	l	d	u	
α (NLO)	-0.39	0.998	0.93	-0.31	

1) CMS @ 7 TeV Chromo-magnetic anomalous couplings: CMS PAS TOP-14-005

ATLAS@7 TeV: PRD 90 112016 (2014) Beasiest observable, $\Delta \phi_{\ell\ell}$ Beasiest observable, $\Delta \phi_{\ell\ell}$ Beasiest observable, $\Delta \phi_{\ell\ell}$ Second State of the second second

 $\Delta f_{SM}/f_{SM}=12\%$

9/30

Antonio Onofre

Top quark physics from run 1 of the LHC

< □ > < □ > < □ >

Probing the top quark spin

tt Results from ATLAS @ 7 TeV: PRL 111 232002 (2013)

Dilepton and ℓ +jets $t\bar{t}$ events

 \mathbb{R} Template fit to reconstructed $cos\theta_\ell$

Two hypothesis tested:

1) CP cons. (CPC): t and \overline{t} with same P

2) CP viola. (CPV): t and \overline{t} with opposite P

 $\begin{aligned} &\alpha_{\ell} P_{\rm CPC} = -0.035 \pm 0.014 \; (\text{stat}) \pm 0.037 \; (\text{syst}) \\ &\alpha_{\ell} P_{\rm CPV} = +0.020 \pm 0.016 \; (\text{stat})^{+0.013}_{-0.017} \; (\text{syst}) \end{aligned}$

Testing a Standard Model prediction: [Phys. Rev. D 45 (1992) 124]

W bosons produced with different helicities:

$$\begin{split} F_0^{\rm SM} &= 0.687 \pm 0.005 \quad F_{\rm L}^{\rm SM} = 0.311 \pm 0.005 \quad F_{\rm R}^{\rm SM} = 0.0017 \pm 0.0001, \\ & (F_0 + F_{\rm L} + F_{\rm R} = 1) \end{split}$$

@ NNLO QCD calculation, Phys. Rev. D81 (2010) 111503

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ ○ ○ 11/30

The $t \rightarrow bW$ decay in $t\bar{t}$ events

Antonio Onofre

The $t \rightarrow bW$ decay in $t\bar{t}$ events

Angular distributions of the top decay products (and asymmetries) can be used to probe anomalous couplings at the Wtb vertex IS Combinations is the game!

- What next? IS extract the spin properties of the mensagers of new physics from data arXiv:1508.04592v2 [hep-ph] 21 Aug 2015
- Assuming $V_L=1$ ($V_R=0$) is what is the current LHC status of V_{tb} in the SM? What about the top quark couplings to other bosons?

Top quark couplings to bosons: V_{tb} @ LHC

Summary of V_{tb} Measurements @ LHC

$$\begin{split} \mathbb{L} & \mathbb{C} |V_{tb}|^2 \text{ extracted with:} \\ |V_{tb,obs.}|^2 &= \frac{\sigma_{t,obs.}}{\sigma_{t,SM}} \times |V_{tb,SM}|^2 \end{split}$$

 $\delta |V_{tb}| / |V_{tb}| @ 5-10\%$

IS What about the top quark couplings to the known gauge bosons (γ, W, Z, H) ?

(日)

14/30

Top Couplings to Bosons ttV ($V = \gamma, Z, W, H$)

Top Couplings to Bosons ttV ($V = \gamma, Z, W, H$)

 $t\overline{t}V, V = Z, W_{\otimes}$

ATLAS @ 8 TeV, 20.3 fb⁻¹ :

ATLAS-CONF-2015-032

Multi-lepton final state $(e+\mu)$ channels:

1 3 and 4-lepton exclusive searchs (target mostly $t\bar{t}Z$):

 $\sigma(t\bar{t}Z) = 176^{+52}_{48}(stat) \pm 44(syst)$ fb

SS+OS 2- lepton search (target $t\bar{t}V$):

 $\sigma(t\bar{t}W) = 369^{+86}_{-79}(stat) \pm 44(syst)$ fb

 $\Delta \sigma_{t\bar{t}V}/\sigma_{t\bar{t}V} = 30{\text -}40\%$, sig. of 5.0 σ (4.2 σ) over back. for $t\bar{t}W(t\bar{t}Z)$

CMS @ 8 TeV, 19.5 fb⁻¹ :

[CMS-PAS-TOP-14-021]

$t\bar{t}$ +HF @ LHC

Semileptonic tt decays:

- Single tight lepton ($e, \mu w/p_T >$ 30 GeV)
- $N_j \ge 4 (p_T > 50 \text{ GeV})$
- $N_{b-tag} \ge 2$ (using CSVM wrk. point)
- \mathbf{K} $t\bar{t}$ reconstruction in 3 steps:
- 1) use constrained fit w/ m_W , m_t (no b-tag info used)
- 2) jet association using BDT multivariate classifier
- 3) b-tag discriminant variable> 0.5

Fid. phase space results from templates fit: $\sigma(t\bar{t}b\bar{b}) = 271 \pm 103(stat) \pm 32.2(syst) \pm 7(lumi)$ fb Theory (NLO)=229^{+18%} fb, JHEP1407,135(2014) $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj) = 0.0117 \pm 0.0040(stat) \pm 0.0003(syst)$

ATLAS $\sigma_{t\bar{t}}$ (20.3 fb⁻¹@8TeV): ATLAS TOPQ-2014-10

Several analysis for $t\bar{t}b(\bar{b})$: The matrix of the m

Antonio Onofre Top quark physics from run 1 of the LHC

FCNC processes ($tqX, X = \gamma, Z, g, H$)

• Several *t*t̄ FCNC Decay Channels Studied @ LHC:

Theoretical predictions for the BR of FCNC top quark decays

Process	SM	QS	2HDM	FC 2HDM	MSSM	🕅 SUSY	RS
$t \rightarrow uZ$	8×10^{-17}	1.1×10^{-4}	_	_	$2 imes 10^{-6}$	$3 imes 10^{-5}$	_
$t \rightarrow u\gamma$	$3.7 imes 10^{-16}$	$7.5 imes10^{-9}$	_	—	$2 imes 10^{-6}$	$1 imes 10^{-6}$	_
$t \rightarrow ug$	$3.7 imes 10^{-14}$	$1.5 imes 10^{-7}$	_	_	8×10^{-5}	2×10^{-4}	_
$t \rightarrow uH$	2×10^{-17}	$4.1 imes 10^{-5}$	$5.5 imes10^{-6}$	—	10 ⁻⁵	$\sim 10^{-6}$	_
$t \rightarrow cZ$	1×10^{-14}	1.1×10^{-4}	$\sim 10^{-7}$	$\sim 10^{-10}$	$2 imes 10^{-6}$	$3 imes 10^{-5}$	$\le 10^{-5}$
$t \rightarrow c\gamma$	$4.6 imes 10^{-14}$	$7.5 imes 10^{-9}$	$\sim 10^{-6}$	$\sim 10^{-9}$	2×10^{-6}	1×10^{-6}	$\le 10^{-9}$
$t \rightarrow cg$	4.6×10^{-12}	$1.5 imes 10^{-7}$	$\sim 10^{-4}$	$\sim 10^{-8}$	8×10^{-5}	2×10^{-4}	$\le 10^{-10}$
$t \rightarrow cH$	3×10^{-15}	$4.1 imes 10^{-5}$	$1.5 imes 10^{-3}$	\sim 10 $^{-5}$	10 ⁻⁵	$\sim 10^{-6}$	$\le 10^{-4}$

Acta Phys.Polon.B35,2695(2004), arXiv:1311.2028

- In the SM flavour changing neutral currents (FCNC) are forbidden at tree level and much smaller than the dominant decay mode (t → bW) at one loop level
- BSM models predict higher BR for top FCNC decays

 [®] powerful probe for new physics

FCNC processes ($tqX, X = \gamma, Z, g, H$)

 $t\bar{t} \rightarrow \ell\nu b + \ell\ell q$ (19.7 fb⁻¹,8 TeV \oplus 5.0 fb⁻¹,7 TeV): PRL112,171802(2014)

Trilepton selection:

 \mathbb{R} 3 iso. leptons (e,μ) with 2 $\ell^+\ell^-$

with 1 pair 78 GeV< $|m_{\ell+\ell-} - m_Z|$ <102 GeV

- ET ET South Contract Contract
- $\mathbb{R}^{2} \geq 2$ jets, with p_{T} >30 GeV, only 1 b_{jet}

IS m_{Zj}, m_{Wb} cuts

Results @ 7+8 TeV:

 $Br(t \rightarrow qZ)$ < 0.05% (obs.) 0.09% (exp.) @ 95% CL Syst.: Ren./Fac. Q^2 scales, $\sigma_{t\bar{t}}$, PDF

FCNC Direct Bounds RUN I (short) Summary:

Decay Channel	95% CL Limit	Data S	Set and Exp.	· (j 1		und i		dial -	
$B(t \rightarrow qg)$	4.0 \times 10 ⁻⁵ (q = u) ATLAS-1	OPQ-2014-13-002		-		-		Е
	$1.70 \times 10^{-4} (q = c$	e) (8 Te	eV, 20.3 fb ⁻¹)	딾 10 ⁻¹	_ L	EP			F
	3.55×10^{-4} (q = L) CMS-P	AS-TOP-14-007		CDF			$\rightarrow \leftarrow$	1
	3.44×10^{-3} (q = c	; ;) (7Te	V,5.0 fb ⁻¹)	10 ⁻²	- 00			$ \rangle$	
		/ (-	, ,	10	ATLAS (2	fb ⁻¹)			t
$B(t \rightarrow qZ)$	$7 \times 10^{-4} (q = u)$, c) arX	iv:1508.05796		CMS (4.6	fb ⁻¹)			
		(8)	√eV, 20.3 fb ^{−1})	10 ⁻³	ATL preliminary (AS simulation	,		1
	$5 \times 10^{-4} (q = u$, c) PRL1	112 ,171802(2014)		extrapolated	d to 14 TeV	÷		
	(7Te	V,5.0 fb ⁻¹ ∈	€8TeV,19.7 fb ⁻¹)	10 ⁻⁴	. ,				L
						\rightarrow	(sequential)		Ľ
$B(t ightarrow q\gamma)$	$1.61 \times 10^{-4} (q = u)$) CMS-P	AS-TOP-14-003	10-5		\rightarrow	3 ab ¹ (sequential)		
	$1.82 \times 10^{-3} (q = c$) (8 Te	eV, 19.1 fb ⁻¹)	10	+	\rightarrow	3 ab ⁻¹ discriminant)		
				_ 1		ruid r			4
$B(t \rightarrow qH)$	$7.90 \times 10^{-3} (q = u)$, c) JHEF	21406,008(2014)		10 -	10*	10 -	10-	
	(7Te	V,4.7 fb ⁻ '∈	98TeV,20.3 fb ⁻ ')	1 /3					
	$4.20 \times 10^{-3} (q = u)$) CMS-P	AS-TOP-14-019	1.53	95%Lir	nits @	RUN 2 e	xpect	эd
	$4.70 \times 10^{-3} (q = c$) (8 Te	eV, 19.7 fb ⁻¹)	_	improve	$e \sim 1$	order of r	nagni	iu
					ATL-PH	IYS-PL	JB-2012-	001 🔇	R
				-	ATL-PH	IYS-PI	JB-2013-	012	ĥ
🖙 Limits @	RUN 1 in the	range	10 ⁻³ to 10 ⁻	-5		D4 O F			MS
		U			CMS	-PAS-F	IR-13-0	16 📘	

-≣-> 크

CMS σ_{tī} (42 pb⁻¹@ 13 TeV): CMS PAS TOP-15-003

$tar{t}$ Dilepton ($e^{\pm}\mu^{\mp}$):

- -1 e and 1 μ of opp. charge
- OS leptons, p_T >20 GeV, $|\eta|$ <2.4
- - $M_{e^{\pm}\mu^{\mp}}$ <20GeV
- \geq 2 jets, p_T >30 GeV, $|\eta|$ <2.4
- Non W/Z back. estimated with SS leptons
- N_D=220, N_{sig}=207±16, N_{bck}=28.1±5.7

ATLAS $\sigma_{t\bar{t}}$ (78 pb⁻¹):

$$\begin{split} t\overline{t} \text{ Dilepton } (e^{\pm}\mu^{\mp}): \\ & \mathbb{I} \cong t\overline{t} \to (e^{\pm} + \nu_e + b) + (\mu^{\mp} + \nu_{\mu} + b) \\ & - \text{OS leptons, } p_T > 25 \text{ GeV}, \, \eta < 2.4 \\ & - \text{Exactly 1 or 2 } b_{jels}, \, p_T > 25 \text{ GeV} \\ & - \text{No } E_T^{mis} \text{ cut applied} \\ & N_1 = L\sigma_{t\overline{t}} \epsilon_{e\mu} 2\epsilon_b (1 - C_b\epsilon_b) + N_1^{bkg} \\ & N_2 = L\sigma_{t\overline{t}} \epsilon_{e\mu} C_b\epsilon_b^2 + N_2^{bkg} \\ & - N_1 = 319, N_2 = 167, \, \epsilon_b = 0.527 \pm 0.026 \pm 0.006 \end{split}$$

Antonio Onofre

Top quark physics from run 1 of the LHC

(日)

Cross-Section Increases by a factor ~ 3 @ 13 TeV

Antonio Onofre Top quark physics from run 1 of the LHC

Antonio Onofre

Conclusions

- Top quark has turned 20, still a long way to go in RUN 2
- At RUN I strings went really well: measurements are a World reality with CDF, D0, ATLAS and CMS
- Although no new physics seen @ LHC in top quark physics, it might be just at the corner
- Many measurements are already dominated by systematic errors IS need combinations with dedicated tools
- Still a long way to get more precision @ RUN 2 (looks really promising):
 - top quark production (e.g. s-channel single top and V_{tb})
 - couplings to gauge bosons ($ttV, V = \gamma, Z, W, H$) is form factors
 - rare decays ($t \rightarrow Ws, Wd$, FCNC, new physics)

The phenomenology of top quark physics needs high precision

List of public results from ATLAS and CMS on top quark physics:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsTOP

(4回) (4回) (4回) (回)

シママ 24/30

Top Quark Physics @ RUN 1 of the LHC

SLIDES

Antonio Onofre Top quark physics from run 1 of the LHC

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q () ●

イロト イポト イヨト イヨト 三日

かくで 26/30

Charge Asymmetry @ LHC

Antonio Onofre

Measuring the W helicity states:

$$\frac{1}{N}\frac{\mathrm{d}N}{\mathrm{d}\cos\theta_{\ell}^{*}} = \frac{3}{2}\left[F_{0}\left(\frac{\sin\theta_{\ell}^{*}}{\sqrt{2}}\right)^{2} + F_{\mathrm{L}}\left(\frac{1-\cos\theta_{\ell}^{*}}{2}\right)^{2} + F_{\mathrm{R}}\left(\frac{1+\cos\theta_{\ell}^{*}}{2}\right)^{2}\right]$$

 $\theta_{\ell}^* \rightarrow$ the angle between the ℓ (in *W* rest frame) and the *W* (in *t* rest frame)

FCNC processes ($tqX, X = \gamma, Z$)

• FCNC Direct Bounds RUN I Summary @ LHC:

₩ t	CMS
<u>n</u> ŝ	
$< 4.0 \times 10^{-5} (q = u)$ ATLAS-TOPQ-2014-13-002	$< 3.55 \times 10^{-4} (q = u)$ CMS-PAS-TOP-14-007
$< 17 \times 10^{-5}$ ($q = c$) (8 TeV, 20.3 fb ⁻¹)	$< 3.44 \times 10^{-3} (q = c)$ (7TeV,5.0 fb ⁻¹)
$< 3.1 \times 10^{-5}$ (q = u) ATLAS-CONF-2013-063	< 0.56% (q = u) CMS-PAS-TOP-12-021
$< 1.6 \times 10^{-4}$ (q = c) (8 TeV, 14.2 fb ⁻¹)	< 7.12% (q = c) (7TeV,5.0 fb ⁻¹)
$< 5.7 \times 10^{-5}$ (q = u) PLB 712 ,351(2012)	
$< 2.7 \times 10^{-4} (q = c)$ (7 TeV, 2.05 fb ⁻¹)	
$< 7 \times 10^{-4} (q = u, c)$ arXiv:1508.05796	< 0.05% (q = u, c) PRL112,171802(2014)
(8 TeV, 20.3 fb ⁻¹)	(7TeV,5.0 fb ⁻¹ ⊕8TeV,19.7 fb ⁻¹)
< 0.73% (q = u, c) JHEP1209,139(2012)	< 0.21% (q = u, c) PLB 718 ,1252(2013)
(7 TeV, 2.1 fb ⁻ ')	(7TeV,5.0 fb ⁻⁺)
	< 0.51% (q = u) CMS-PAS-TOP-T2-021
	< 11.4% (q = c) (7 IeV,5.0 TD) $< 0.07\% (q = \mu_c)$ CMS-PAS-TOP-12-037
	$(8 \text{TeV} + 10.5 \text{ fb}^{-1})$
	$< 0.0161\% (a = \mu)$ CMS-PAS-TOP-14-003
	< 0.182% (q = c) (8 TeV. 19.1 fb ⁻¹)
< 0.79% (<i>q</i> = <i>u</i> , <i>c</i>) JHEP 1406 ,008(2014)	< 0.42% (q = u) CMS-PAS-TOP-14-019
(7TeV,4.7 fb ⁻¹ ⊕8TeV,20.3 fb ⁻¹)	< 0.47% (q = c) (8 TeV, 19.7 fb ⁻¹)
	< 0.56% (q = c) PRD90,112013(2014)
	(7TeV,5.0 fb ^{−1} ⊕8TeV,19.7 fb ^{−1})
	< 0.93% (q = c) CMS-PAS-TOP-13-017
	(8 TeV, 19.7 fb ⁻¹)
	< 1.3% (q = c) PRD90,032006(2014)
	(8 TeV, 19.5 fb ⁻¹)
	$(3.1) = \frac{1}{2} = \frac{1}{2$

Top Couplings to Bosons ttV ($V = \gamma, Z, W, H$)

*t*t*H* @ 8 TeV

 $Lumi = 20.3 \text{ fb}^{-1}$: arXiv:1506.05988v1 [hep-ex], accepted by PLB

