

Measurements of the properties of the Higgs boson with ATLAS

Michaela Queitsch-Maitland

(University of Manchester)

On behalf of the ATLAS Collaboration

ICNFP2015 23rd-30th August Kolymbari, Crete

- Very successful Run-1 at the LHC has allowed us to go from discovery towards precision measurements of the properties of the Higgs boson in diboson channels.
 - Mass
 - Width

- See next talk by N. Lu
- Couplings
- Spin & parity
- Fiducial and differential cross sections

Spin and parity (γγ, ZZ*, WW*)

<u>arXiv:1506.05669</u>, submitted to EPJC <u>Eur. Phys. J. C75 (2015) 231</u>

• Study spin and CP properties using the *Higgs characterisation model* described in <u>arXiv:1306.6464</u>, which uses an *effective field theory* (EFT) approach.

$$\mathcal{L}_{0}^{V} = \left\{ \cos(\alpha) \kappa_{\text{SM}} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] - \frac{1}{4} \frac{1}{\Lambda} \left[\cos(\alpha) \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + \sin(\alpha) \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] - \frac{1}{2} \frac{1}{\Lambda} \left[\cos(\alpha) \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + \sin(\alpha) \kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] \right\} X_{0}$$

- Discriminant observables sensitive to spin and parity of the signal used to probe spin-0 and spin-2 hypotheses:
 - SM Higgs boson
 - BSM spin-0 CP-even
 - BSM spin-0 CP-odd
 - Mixtures of SM + spin-0 BSM CP-even or CP-odd
 - Graviton-like spin-2 particle with universal and non-universal couplings

• Study spin and CP properties using the *Higgs characterisation model* described in <u>arXiv:1306.6464</u>, which uses an *effective field theory* (EFT) approach.

Universal couplings

$$\mathcal{L}_{2} = -\frac{1}{\Lambda} \left[\sum_{V} \kappa_{V} \mathcal{T}_{\mu\nu}^{V} X^{\mu\nu} + \sum_{f} \kappa_{f} \mathcal{T}_{\mu\nu}^{f} X^{\mu\nu} \right]$$

 κ_q

Non-universal couplings

 κ_q

Strength of vector boson coupling

Г

Strength of fermion coupling

- Discriminant observables sensitive to spin and parity of the signal used to probe spin-0 and spin-2 hypotheses:
 - SM Higgs boson
 - BSM spin-0 CP-even
 - BSM spin-0 CP-odd
 - Mixtures of SM + spin-0 BSM CP-even or CP-odd
 - Graviton-like spin-2 particle with universal and non-universal couplings

Spin and parity: discriminant observables

MANCHESTER 1824

• All considered non-SM spin hypotheses excluded at more than 99.9% CL.

- Tensor structure of HVV interaction investigated assuming spin-0 hypothesis.
- Mixture of SM + BSM CP-even/CP-odd terms tested independently.
- Consistent with SM expectations.

Fiducial and differential cross sections (yy, ZZ*)

JHEP09(2014)112

Physics Letters B 738 (2014) 234-253

arXiv:1504.05833, accepted by PRL

arXiv:1508.02507, submitted to PLB

- *Cross sections*: direct measurement of Higgs production rates with minimal assumptions on the underlying model.
- Differential cross sections probe various properties of the Higgs boson: theoretical modelling of gluon fusion, spin/CP, jet activity.
- Corrected for efficiency and resolution of detector to *particle level* within a *fiducial volume* to reduce model dependence.

Fiducial cross sections

The University of Manchester

 $pp \to H \to \gamma \gamma$

 $\sigma_{fid} = 43.2 \pm 9.4 \text{ (stat.)} \pm ^{+3.2}_{-2.9} \text{ (syst.)} \pm 1.2 \text{ (lumi) fb}$ $\sigma_{\text{LHC-XS}} = 30.5 \pm 3.3 \text{ fb}$

$$pp \to H \to ZZ^* \to 4l$$

 $\sigma_{fid} = 2.11 \, {}^{+0.53}_{-0.47} \, (\text{stat.}) \pm 0.08 \, (\text{syst.}) \, \text{fb}$
 $\sigma_{\text{LHC-XS}} = 1.3 \pm 0.13 \, \text{fb}$

- Differential distributions broadly in line with SM expectations and compatible between $\gamma\gamma$ and ZZ* channels.
- Many observables measured, unfolded data and uncertainties available on HepData.

- Differential distributions broadly in line with SM expectations and compatible between $\gamma\gamma$ and ZZ* channels.
- Many observables measured, unfolded data and uncertainties available on HepData.

- Total cross section and differential distributions from combining data in the $\gamma\gamma$ and ZZ* channels.
- Corrected for branching fraction and fiducial acceptance.
- Overall normalisation higher, but shapes of distributions consistent with SM.

- Total cross section and differential distributions from combining data in the $\gamma\gamma$ and ZZ* channels.
- Corrected for branching fraction and fiducial acceptance.
- Overall normalisation higher, but shapes of distributions consistent with SM.

- Set limits on *Wilson coefficients* for *strongly interacting light Higgs* (SILH) EFT formulation, from <u>arXiv:1303.3876</u>.
- Analyses 5 differential distributions from $\gamma\gamma$ measurement ($p_T^{\gamma\gamma}$, N_{jets} , p_T^{j1} , m_{jj} , $\Delta \phi_{jj}$).
 - Statistical correlations between observables produced from toys.
- Results consistent with expectations for a SM Higgs boson.

$$\mathcal{L} = \bar{c}_{\gamma} O_{\gamma} + \bar{c}_{g} O_{g} + \bar{c}_{HW} O_{HW} + \bar{c}_{HB} O_{HB} + \tilde{c}_{\gamma} \tilde{O}_{\gamma} + \tilde{c}_{g} \tilde{O}_{g} + \tilde{c}_{HW} \tilde{O}_{HW} + \tilde{c}_{HB} \tilde{O}_{HB}$$

MANCHESTER

- Set limits on *Wilson coefficients* for *strongly interacting light Higgs* (SILH) EFT formulation, from <u>arXiv:1303.3876</u>.
- Analyses 5 differential distributions from $\gamma\gamma$ measurement ($p_T^{\gamma\gamma}$, N_{jets} , p_T^{j1} , m_{jj} , $\Delta \phi_{jj}$).
 - Statistical correlations between observables produced from toys.
- Results consistent with expectations for a SM Higgs boson.

$$\mathcal{L} = \begin{bmatrix} \bar{c}_{\gamma} O_{\gamma} + \bar{c}_{g} O_{g} + \bar{c}_{HW} O_{HW} + \bar{c}_{HB} O_{HB} \\ + \tilde{c}_{\gamma} \tilde{O}_{\gamma} + \tilde{c}_{g} \tilde{O}_{g} + \tilde{c}_{HW} \tilde{O}_{HW} + \tilde{c}_{HB} \tilde{O}_{HB} \end{bmatrix} CP\text{-even}$$

 \overline{c}_{γ}

MANCHESTER

- Set limits on *Wilson coefficients* for *strongly interacting light Higgs* (SILH) EFT formulation, from <u>arXiv:1303.3876</u>.
- Analyses 5 differential distributions from $\gamma\gamma$ measurement ($p_T^{\gamma\gamma}$, N_{jets} , p_T^{j1} , m_{jj} , $\Delta \phi_{jj}$).
 - Statistical correlations between observables produced from toys.
- Results consistent with expectations for a SM Higgs boson.

$$\mathcal{L} = \bar{c}_{\gamma} O_{\gamma} + \bar{c}_{g} O_{g} + \bar{c}_{HW} O_{HW} + \bar{c}_{HB} O_{HB} + \tilde{c}_{\gamma} \tilde{O}_{\gamma} + \tilde{c}_{g} \tilde{O}_{g} + \tilde{c}_{HW} \tilde{O}_{HW} + \tilde{c}_{HB} \tilde{O}_{HB}$$

MANCHESTER

- Set limits on *Wilson coefficients* for *strongly interacting light Higgs* (SILH) EFT formulation, from <u>arXiv:1303.3876</u>.
- Analyses 5 differential distributions from $\gamma\gamma$ measurement ($p_T^{\gamma\gamma}$, N_{jets} , p_T^{j1} , m_{jj} , $\Delta \phi_{jj}$).
 - Statistical correlations between observables produced from toys.
- Results consistent with expectations for a SM Higgs boson.

$$\mathcal{L} = \bar{c}_{\gamma} \mathcal{O}_{\gamma} + \bar{c}_{g} \mathcal{O}_{g} + \bar{c}_{HW} \mathcal{O}_{HW} + \bar{c}_{HB} \mathcal{O}_{HB} + \tilde{c}_{\gamma} \tilde{\mathcal{O}}_{\gamma} + \tilde{c}_{g} \tilde{\mathcal{O}}_{g} + \tilde{c}_{HW} \tilde{\mathcal{O}}_{HW} + \tilde{c}_{HB} \tilde{\mathcal{O}}_{HB}$$

Terms affect coupling of Higgs to photons, gluons and vector bosons

MANCHESTER

The University of Manchester

	$pp \rightarrow H \rightarrow \gamma \gamma$, $\sqrt{s} = 8 \text{ TeV}$, 20.3 fb ⁻¹							ATLAS	– 100 –	$[pp \rightarrow H \rightarrow \gamma \gamma, \sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$
N jets	3 2.8 ±1.0	2.0 ±1.0	5.2 ±1.0	5.2 ±1.0	7.9 ±1.0	10.4 ±1.0	10.5 ±1.0	20.9 ±1.0	0.001	
=:	2 4.7 ±1.1	7.3 ±1.1	9.0 ±1.0	9.7 ±1.0	12.7 ±1.0	22.5 ±0.9	21.6 ±1.0	20.5 ±1.0	70 e	
=	1 7.7 ±1.0	14.3 ±1.1	23.0 ±1.1	29.4 ±0.9	28.6 ±0.9	30.0 ±0.9	19.4 ±1.0	15.3 ±1.0	40 -0.0005	
=0	74.8 ±0.5	40.1 ±1.0	23.0 ±1.2	12.5 ±1.2	4.1 ±1.0	3.7 ±1.0	-1.3 ±1.0	0.3 ±1.1	-20 ⁽⁷⁾ -0.001	► Standard Model = 95% CL =
	0-20	20-30	30-40	40-50	50-60	60-80	80-100 <i>ρ</i> ₁ ^γ	100-200 ^γ [GeV]	-0.0015	-0.002 0 0.002 0.004 0.006

15

- Set limits on *Wilson coefficients* for *strongly interacting light Higgs* (SILH) EFT formulation, from <u>arXiv:1303.3876</u>.
- Analyses 5 differential distributions from $\gamma\gamma$ measurement ($p_T^{\gamma\gamma}$, N_{jets} , p_T^{j1} , m_{jj} , $\Delta \phi_{jj}$).
 - Statistical correlations between observables produced from toys.
- Results consistent with expectations for a SM Higgs boson.

$$\mathcal{L} = \bar{c}_{\gamma} O_{\gamma} + \bar{c}_{g} O_{g} + \bar{c}_{HW} O_{HW} + \bar{c}_{HB} O_{HB} + \tilde{c}_{\gamma} \tilde{O}_{\gamma} + \tilde{c}_{g} \tilde{O}_{g} + \tilde{c}_{HW} \tilde{O}_{HW} + \tilde{c}_{HB} \tilde{O}_{HB}$$

MANCHESTER

- Set limits on Wilson coefficients for strongly interacting light Higgs (SILH) EFT formulation, from <u>arXiv:1303.3876</u>.
- Analyses 5 differential distributions from $\gamma\gamma$ measurement ($p_T^{\gamma\gamma}$, N_{jets} , p_T^{j1} , m_{jj} , $\Delta \phi_{jj}$).
 - Statistical correlations between observables produced from toys.
- Results consistent with expectations for a SM Higgs boson.

$$\mathcal{L} = \bar{c}_{\gamma} O_{\gamma} + \bar{c}_{g} O_{g} + \bar{c}_{HW} O_{HW} + \bar{c}_{HB} O_{HB}$$

+ $\tilde{c}_{\gamma} \tilde{O}_{\gamma} + \tilde{c}_{g} \tilde{O}_{g} + \tilde{c}_{HW} \tilde{O}_{HW} + \tilde{c}_{HB} \tilde{O}_{HB}$

95% confidence intervals can be translated to Higgs characterisation framework

 $-0.08 < \tilde{\kappa}_{\rm HVV}/\kappa_{\rm SM} < 0.09$ $-0.22 < \tan(\alpha) \cdot \tilde{\kappa}_{\rm AVV}/\kappa_{\rm SM} < 0.22$

MANCHESTER

- Run-1 at the LHC has been very successful for physics in the Higgs sector.
 - Transitioned from search to discovery to begin precision measurements.
- Current measurements of spin & parity, fiducial and differential cross sections are reasonably consistent with SM expectations.
- Run-2 will allow for more precise measurements, and to extend to other channels.