Very-high-energy astrophysical neutrinos with IceCube

Ignacio Taboada
Georgia Institute of Technology
Cosmic Rays – Neutrinos – γ rays

\[p + p \rightarrow \pi + ... \]
\[p + \gamma \rightarrow \Delta^+ \rightarrow \begin{cases} n + \pi^+ \\ p + \pi^0 \end{cases} \]
\[\pi^0 \rightarrow \gamma + \gamma \]
\[\pi^+ \rightarrow \mu^+ + \nu_\mu \]
\[\rightarrow e^+ + \nu_e + \bar{\nu}_\mu \]

C.R. accelerator

Photon

Neutrino

I. Taboada | Georgia Tech | ICNFP '15
Neutrinos and γ rays

- UV
- X-ray
- Gamma Rays
 - Fermi GBM
 - Fermi LAT
 - HAWC
 - IACTS

- Neutrinos
 - Earth
 - Nuclear Reactors
 - Supernovae
 - Sun
 - Accelerators
 - Atmospheric Neutrinos
 - VHE ν Astro

- Energy (eV)
 - 1 (eV)
 - 10^3 (keV)
 - 10^6 (MeV)
 - 10^9 (GeV)
 - 10^{12} (TeV)
 - 10^{15} (PeV)

I. Taboada | Georgia Tech | ICNFP '15
Full operation since May 2011. Partial operation before this.
Event signatures

(up-going) muon: ν_μ

cascade \rightarrow all flavors

Poor angular resolution 10° – 40°
Visible energy resolution $\sim 20\%$
Good(*) ν-cascade energy correlation

Good angular resolution $< 1^\circ$
Visible energy resolution $\sim 20\%$
Poor ν-\(\mu\) energy correlation

Main background to ν studies

Other ν event topologies are possible
(* not true for sub-dominant neutral current interactions)
Update on Discovery of a quasi-diffuse ν flux

"4 year" update: 54 events after cuts
Background:
12.6 ± 5.1 down-going muons (tag)

"3-year" study: Aarsten et al. PRL 113 101101
"2-year" study: Aarsten et al. Science 342 6161

I. Taboada | Georgia Tech | ICNFP '15
Deposited energy vs. declination

Southern Sky (downgoing) Northern Sky (upgoing)

- Background Atmospheric Muon Flux
- Bkg. Atmospheric Neutrinos (π/K)
- Background Uncertainties
- Atmospheric Neutrinos (90% CL Charm Limit)
- Bkg.+Signal Best-Fit Astrophysical (best-fit slope $E^{-2.58}$)
- Bkg.+Signal Best-Fit Astrophysical (fixed slope E^{-2})
- Data

IceCube Preliminary 4-year update
Other ways to study this flux

Assuming best-fit power law:
- Unfolding (stat. error)
- Unfolding (incl. best-fit uncert.)
- Astrophysical $\nu_e + \bar{\nu}_e$
- Conv. atmospheric $\nu_\mu + \bar{\nu}_\mu$
- Combined $\nu_\mu + \bar{\nu}_\mu$

"3 year" – 6 year planned ν_μ diffuse

IceCube Preliminary

Phys. Rev. D 91, 022001
Submitted to PRL arXiv:1507.04005
Phys. Rev. Lett. 113, 101101
3 year ν_μ – preparation for 6 year
Highest energy neutrino in 6 years (ν_{μ} search)

Deposited energy: 2.6 ± 0.3 PeV

Schoenen & Raedel et al. ATel # 7856

RA: 110.34°
Dec: 11.48°
PSF 99%: 1°
June 11, 2014
(56819.20444852863 MJD)
What are the sources?

Event distribution is consistent with a diffuse flux
Event flavor consistent with oscillations over astrophysical scale
Point source: No (p-value 0.44 cascades / 0.58 all)
Less than ~100 sources explaining the astro-ν flux would have been detected in “traditional” IceCube νµ point source search.
Follow up by multiple instruments (e.g γ ray): No obvious counterpart
GRBs (prompt < 1-3%, ±20h <12%): No
Short (<100 s) transients: Probably not.
Galactic plane: No (p-value 0.025; 7.5° band)
<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Journal reference</th>
<th>ArXiv</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>IceCube PeV cascade events initiated by electron-antineutrinos at Glashow resonance</td>
<td>Barger, Learned, Pakvasa</td>
<td>PRD 87, 037302 (2013)</td>
<td>1207.4571</td>
<td>Glashow resonance</td>
</tr>
<tr>
<td>Neutrino decays over cosmological distances and the implications for neutrino telescopes</td>
<td>Baerwald, Bustamante, Winter</td>
<td>JCAP10(2012)020</td>
<td>1208.4600</td>
<td>Neutrino decay</td>
</tr>
<tr>
<td>On the Interpretation of IceCube cascade events in terms of the Glashow resonance</td>
<td>Bhattacharya, Gandhi, Rodejohann, Watanabe</td>
<td>---</td>
<td>1209.2422</td>
<td>Glashow resonance</td>
</tr>
<tr>
<td>PeV neutrinos from the propagation of ultra-high energy cosmic rays</td>
<td>Roulet, Sigl, van Vliet, Mollerach</td>
<td>JCAP01(2013)028</td>
<td>1209.4033</td>
<td>GZK</td>
</tr>
<tr>
<td>On the origin of IceCube’s PeV neutrinos</td>
<td>Cholis, Hooper</td>
<td>JCAP06(2013)030</td>
<td>1211.1974</td>
<td>Extragalactic (GRB)</td>
</tr>
<tr>
<td>Cosmic PeV Neutrinos and the Sources of Ultrahigh Energy Protons</td>
<td>Kistler, Stanek, Yuxel</td>
<td>---</td>
<td>1301.1703</td>
<td>Extragalactic</td>
</tr>
<tr>
<td>PeV Neutrinos from Intergalactic Interactions of Cosmic Rays Emitted by Active Galactic Nuclei</td>
<td>Kaloshov, Kusenko, Essey</td>
<td>PRL 111, 041103 (2013)</td>
<td>1303.0300</td>
<td>Extragalactic (AGN)</td>
</tr>
<tr>
<td>Diffuse PeV neutrino emission from ultraluminous infrared galaxies</td>
<td>He, Wang, Fan, Liu, Wei</td>
<td>PRD 87, 063011 (2013)</td>
<td>1303.1253</td>
<td>Extragalactic (Infrared galaxies)</td>
</tr>
<tr>
<td>Stringent constraint on neutrino Lorentz invariance violation from the two IceCube PeV neutrinos</td>
<td>Borriello, Chakraborty, Minzti, Serpico</td>
<td>PRD 87, 116009 (2013)</td>
<td>1303.5843</td>
<td>Lorentz invariance</td>
</tr>
<tr>
<td>Neutrinos at IceCube from heavy decaying dark matter</td>
<td>Feldstein, Kusenko, Matsumoto, Yangaida</td>
<td>PRD 88, 015004 (2013)</td>
<td>1303.7320</td>
<td>Exotic (dark matter decay)</td>
</tr>
<tr>
<td>Galactic PeV Neutrinos</td>
<td>Gupta</td>
<td>---</td>
<td>1305.4123</td>
<td>Galactic</td>
</tr>
<tr>
<td>Sub-PeV Neutrinos from TeV Unidentified Sources in the Galaxy</td>
<td>Fox, Kashiyama, Meszaros</td>
<td>ApJ 774, 74 (2013)</td>
<td>1305.6606</td>
<td>Galactic</td>
</tr>
<tr>
<td>Superheavy Particle Origin of IceCube PeV Neutrino Events</td>
<td>Barger, Keung</td>
<td>---</td>
<td>1305.6907</td>
<td>Exotic (Leptoquark)</td>
</tr>
<tr>
<td>PeV neutrinos observed by IceCube from cores of active galactic nuclei</td>
<td>Stecker</td>
<td>PRD 88, 047301 (2013)</td>
<td>1305.7404</td>
<td>Extragalactic (AGN)</td>
</tr>
<tr>
<td>TeV-PeV Neutrinos from Low-Power Gamma-Ray Burst Jets Inside Stars</td>
<td>Murase, Ioka</td>
<td>PRL 111, 121102 (2013)</td>
<td>1306.2274</td>
<td>Extragalactic (GRB)</td>
</tr>
<tr>
<td>Demystifying the PeV cascades in IceCube: Less (energy) is more (events)</td>
<td>Laha, Beecham, Dasgupta, Horiwuchi, Murase</td>
<td>PRD 88, 043009 (2013)</td>
<td>1306.2309</td>
<td>---</td>
</tr>
<tr>
<td>Testing the Hadronuclear Origin of PeV Neutrinos Observed with IceCube</td>
<td>Murase, Ahlers, Lacki</td>
<td>---</td>
<td>1306.3417</td>
<td>Extragalactic</td>
</tr>
<tr>
<td>Pinning down the cosmic ray source mechanism with new IceCube data</td>
<td>Anchordoqui, Goldberg, Lynch, Olinto, Paul, Weller</td>
<td>---</td>
<td>1306.5021</td>
<td>Galactic</td>
</tr>
<tr>
<td>Constraining Superluminal Electron and Neutrino Velocities using the 2010 Crab Nebula Flare and the IceCube PeV Neutrino Events</td>
<td>Stecker</td>
<td>---</td>
<td>1306.6095</td>
<td>Lorentz invariance</td>
</tr>
<tr>
<td>TeV-PeV neutrinos over the atmospheric background: originating from two groups of sources?</td>
<td>He, Yong, Fan, Wei</td>
<td>---</td>
<td>1307.1450</td>
<td>Two source populations</td>
</tr>
<tr>
<td>The Galactic Pevatron</td>
<td>Nerovon, Senikoz, Tchemin</td>
<td>---</td>
<td>1307.2158</td>
<td>Galactic</td>
</tr>
<tr>
<td>Photodisproportion Origin of the TeV-PeV Neutrinos Observed in IceCube</td>
<td>Winter</td>
<td>---</td>
<td>1307.2793</td>
<td>Extragalactic</td>
</tr>
<tr>
<td>Pseudo-Dirac neutrinos via mirror-world and depletion of UHE neutrinos</td>
<td>Joshpura, Mohanty, Pakvasa</td>
<td>---</td>
<td>1307.5712</td>
<td>---</td>
</tr>
<tr>
<td>Are IceCube neutrinos unveiling PeV-scale decaying dark matter?</td>
<td>Esmaili, Serpico</td>
<td>---</td>
<td>1308.1105</td>
<td>Exotic (dark matter decay)</td>
</tr>
<tr>
<td>Establishing the astrophysical origin of a signal in a neutrino telescope</td>
<td>Lipari</td>
<td>---</td>
<td>1308.2086</td>
<td>---</td>
</tr>
<tr>
<td>Testing Relativity with High-Energy Astrophysical Neutrinos</td>
<td>Diaz, Kostelecky, Mewes</td>
<td>---</td>
<td>1308.6344</td>
<td>Lorentz invariance</td>
</tr>
<tr>
<td>A Simple Explanation of the Ultra-high Energy Neutrino Events at IceCube</td>
<td>Chen, Bhuapal De, Soni</td>
<td>---</td>
<td>1309.1764</td>
<td>---</td>
</tr>
<tr>
<td>The Galactic Center Origin of a Subset of IceCube Neutrino Events</td>
<td>Razzouk</td>
<td>---</td>
<td>1309.2756</td>
<td>Galactic</td>
</tr>
<tr>
<td>Probing the Galactic Origin of the IceCube Excess with Gamma-Rays</td>
<td>Ahlers, Murase</td>
<td>---</td>
<td>1309.4077</td>
<td>Galactic</td>
</tr>
</tbody>
</table>
Outlook: IceCube-Gen2

See highlight presentation by J. Koskinen – Sat. Aug. 29
Thank you!

The IceCube Collaboration

44 institutions / 12 countries / ~310 authors

Funding Agencies

Fonds de la Recherche Scientifique (FRS-FNRS)
Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO-Vlaanderen)
Federal Ministry of Education & Research (BMBF)
German Research Foundation (DFG)
Deutsches Elektronen-Synchrotron (DESY)
Japan Society for the Promotion of Science (JSPS)
Knut and Alice Wallenberg Foundation
Swedish Polar Research Secretariat
The Swedish Research Council (VR)

University of Wisconsin Alumni Research Foundation (WARF)
US National Science Foundation (NSF)
Energy spectrum

IceCube Preliminary
“4-year” update