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Motivation

The operator can be formally written as

H = −∆− ωδ′(· − Λ)(δ′(· − Λ), ·̃)

Related to leaky quantum graphs

Attractive δ′ coupling ω(x) > 0

Curve Λ is non-closed Lipschitz C 1 curve

We are interested in the existence and absence of the discrete spectrum of
this operator
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δ′ interaction on a line

The operator can be formally written as

H = −∆− βδ′(0)(δ′(0), ·)

Suitable approximation for following operators

H = −∆ + W a,β
ε,0 (·)

Potential can be written as

W a,β
ε,0 =

−β
εa(ε)2
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where

∫
R Vj(x)dx = 1,

∫
R |x |

1/2|Vj(x)|dx <∞ for j ∈ {1, 2, 3},
limε→0

ε
a(ε)12 = 0 and a(0) = 0
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δ′ interaction on a line

Figure: Approximating potential W ε1/13,1
ε,0 (0) for ε = 1, 1
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δ′ interaction-definition, properties

Operator acts as
H = −∆

with the domain

D(H) = {ψ ∈ H2(R \ {0})| − βψ′(0+) = −βψ′(0−) = ψ(0+)− ψ(0−)}

Sesqilinear form associated with this operator

qβ,δ′(ψ, φ) = (∇ψ,∇φ)− β−1(ψ(0+)− ψ(0−))(φ(0+)− φ(0−))

with the domain D(qβ,δ′) = H1(R \ 0)

Attractive δ′ interactions, i.e. β > 0

Ground state eigenvalue − 4
β2

Essential spectrum σess(H) = [0,∞)
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Definition of the operator-δ′ interaction supported by non-closed curve

The symmetric sesqulinear form

aΣ
δ′,ω[f , g ] :=(∇fi,∇gi)i + (∇fe,∇ge)e − (ω(fe|Σ−fi|Σ), ge|Σ−gi|Σ)Σ,

dom aΣ
δ′,ω := H1(Ωe)⊕H1(Ωi),

is closed, densely defined and lower-semibounded in L2(R2)

Linear mapping

Γ: H1(Ωe)⊕H1(Ωi)→ L2(Σ \ Λ), Γf := fe|Σ\Λ − fi|Σ\Λ,

Symmetric, densely defined and lower-semibounded form

aΛ
δ′,ω[f , g ] := aΣ

δ′,ω[f , g ], dom aΛ
δ′,ω := {f ∈ dom aΣ

δ′,ω : Γf = 0}.

The self-adjoint operator −∆Λ
δ′,ω in L2(R2) induced by the form aΛ

δ′,ω
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Curve preliminaries

Hypothesis 1

Let Ω+ ⊂ R2 be a simply connected Lipschitz domain from the above class,
whose complement Ω− := R2 \ Ω+ is a Lipschitz domain from the same class.
Set Σ := Ω+ = Ω− and suppose that Λ ⊂ Σ is a connected subarc of Σ, which
is not necessarily bounded if Σ is unbounded.

Definition 1

A non-closed curve Λ ⊂ R2 satisfying Hypothesis 1 is called piecewise-C 1 if it
can be parametrized via a piecewise-C 1 mapping

λ : I → R2, λ(s) := (λ1(s), λ2(s)), I := (0, L), L ∈ (0,+∞],

such that λ(I ) = Λ and λ is injective. If, moreover, |λ′(s)| = 1 for almost all
s ∈ I , then such a parametrization is called natural and L is then called the
length of Λ.
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Curve preliminaries

Definition 2

A non-closed piecewise-C 1 curve Λ ⊂ R2 is monotone if it can be parametrized
via the piecewise-C 1 mapping φ : (0,R)→ R, R ∈ (0,+∞], as

Λ =
{
x0 + (r cosφ(r), r sinφ(r)) ∈ R2 : r ∈ (0,R)

}
;

here x0 ∈ R2 is fixed.
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Essential spectrum

Theorem

Let the curve Λ ⊂ R2 as in Hypothesis 1 be such that the domain R2 \ Λ is
quasi-conical. Then the spectrum of the self-adjoint operator −∆Λ

δ′,ω satisfies

−∆Λ
δ′,ω ⊇ [0,+∞).

Theorem

Let the bounded curve Λ ⊂ R2 be as in Hypothesis 1 and let the self-adjoint
operator −∆Λ

δ′,ω be as above. Then its essential spectrum is characterized as

σess(−∆Λ
δ′,ω) = [0,+∞).
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δ′ interaction on a loop

auxiliary self-adjoint Schrödinger operator Td,β

Td,βψ = −ψ′′

domTd,β = {ψ ∈ H2(0, d) : ψ′(0) = ψ′(d), ψ(d−)− ψ(0+) = ω−1ψ′(d)}

associated with the following form

td,β [f , g ] := (f ′, g ′)L2(0,d) − ω(f (d−)− f (0+))(g(d−)− g(0+)),

dom td,β := H1(0, d).

Lemma

If dω ≤ 1, then the above self-adjoint operator Td,β is non-negative.
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Additional properties of the curve

Hypothesis 2

(A) Let a monotone piecewise-C 1 curve Λ be parametrized via the mapping
φ : (0,R)→ R, R ∈ (0,+∞], as in Definition above with x0 = 0.
(B) Suppose that piecewise-C 1 domains G± ⊂ DR satisfy the following
conditions:

G+ ∩ G− = ∅, DR = G+ ∪ G−, and Λ ⊂ G+ ∩ G−.

Set Σ := G+ ∩ G−. In particular, the inclusion Λ ⊂ Σ holds.
(C) Let the function ω ∈ L∞(Λ;R) as a function of the distance r from the
origin satisfy

ω(r) ≤ 1

2πr
√

1 + (rϕ′(r))2
, for all r ∈ (0,R).
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Absence of the discrete spectrum

Theorem

Let a monotone piecewise-C 1 curve Λ ⊂ R2 be parametrized via φ : (0,R)→ R,
R ∈ (0,+∞]. Then

σ(−∆Λ
δ′,ω) ⊆ [0,+∞) if ω(r) ≤ 1

2πr
√

1 + (rφ′(r))2
, for all r ∈ (0,R).

If ω is majorized as above, and additionally, the domain R2 \ Λ is quasi-conical,
then σ(−∆Λ

δ′,ω) = [0,+∞).
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Conformal mapping-Definition

Function M is smooth analytic complex function with non-zero derivative
everywhere in S ⊂ C
conformal map acts as follows

x̃ = <(M(x + iy))

ỹ = =(M(x + iy))

Cauchy-Riemann equations

∂x x̃ = ∂y ỹ ∂x ỹ = −∂y x̃

Linear fractional transformation-LFT

For a, b, c, d ∈ C such that ad − bc 6= 0 the mapping M : Ĉ→ C is an LFT if
one of the two conditions holds:
1) c = 0, d 6= 0, M(∞) :=∞, and M(z) := (a/d)z + (b/d) for z ∈ C.
2) c 6= 0, M(∞) := a/c, M(−d/c) :=∞, and M(z) := az+b

cz+d
for z ∈ C,

z 6= −d/c.
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Generalization of previous result

Theorem

Let Λ ⊂ R2 be a bounded piecewise-C 1 curve and let the self-adjoint operator
−∆Λ

δ′,ω in L2(R2). Suppose that there exists an LFT M : C→ C such that:

(a) M(∞),M−1(∞) /∈ Λ;
(b) Γ := M−1(Λ) is monotone.
Then it holds that

σ(−∆Λ
δ′,ω) = [0,+∞)

where ω ≤ 1√
Jm(z)2πr

√
1+(rφ′(r))2

.
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Theorem

Let −∆Σ
δ′,ω be as before with constant ω and Σ as below. Then for

ω ∈ (−∞, tan(ε/2)
8πR

] the operator −∆Λ
δ′,ω has no negative eigenvalues.

Figure: Sketch of a non-closed segment of the circle in the coordinate system
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Theorem

Assume that Λ := {(x , 0) : 0 < x < L} ⊂ R2 is an interval of length L > 0. Let
the self-adjoint operator −∆Λ

δ′,ω be as before. Under assumption 1
2πL

> ω the

operator −∆Λ
δ′,β has no negative eigenvalues.

Theorem

Assume that Λ := {(x , 0) : 0 < x < L} ⊂ R2 is an interval of length L > 0. Let
the self-adjoint operator −∆Λ

δ′,ω be as before. Under assumption π
2L
< ω the

operator −∆Λ
δ′,β has at least one negative eigenvalue.

Figure: Separation of R2 into three regions Ωk
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Summary

Definition of δ′ interaction supported by a compact non-closed curve

Behavior of the point spectrum governed by a behavior of a δ′ interaction
on a circle

Absence of the negative eigenvalues state for sufficiently small coupling

Existence of the ground state for a large coupling
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