Forward and small-x QCD

Paolo Gunnellini

on behalf of the CMS Collaboration
1. Introduction
2. Inclusive jet measurements
3. Müller-Navelet jet measurements
4. Studies of behaviour of gluon distribution
5. Double parton scattering
6. Summary and conclusion
\[\sigma_{ab \to F}(Q^2) = \int dx_1 dx'_1 f_a^1(x_1, Q^2) f_b^2(x'_1, Q^2) \hat{\sigma}_{ab}(x_1, x'_1, Q^2) \]

- Partonic cross section
- Parton Distribution Functions

Different final states access different scales and \(x \) values

Small-\(x \): BFKL evolution equation

High \(Q^2 \) and high-\(x \):
DGLAP evolution equation

CCFM equation bridges between DGLAP and BFKL

Saturation effects appearing at very small-\(x \)

At the LHC, huge opportunity to study the different regimes
Double differential cross section measurement in rapidity bins as a function of jet p_T

Inclusive jet measurements - Event selection

7 TeV: ak5 - first measurement of inclusive jet cross section at CMS
8 TeV: ak7 - large increase of the phase space in p_T and inclusion of the forward region

CMS L = 34 pb$^{-1}$

\[\frac{d^2\sigma}{dp_T^2 dy} \] for different rapidity bins:
- $|y| < 0.5$ ($\times 3125$)
- $0.5 \leq |y| < 1$ ($\times 625$)
- $1 \leq |y| < 1.5$ ($\times 125$)
- $1.5 \leq |y| < 2$ ($\times 25$)
- $2 \leq |y| < 2.5$ ($\times 5$)
- $2.5 \leq |y| < 3$

CMS Preliminary

pp $\sqrt{s} = 8$ TeV

- open: $L_{int} = 5.8$ pb$^{-1}$ (low PU runs)
- filled: $L_{int} = 10.71$ fb$^{-1}$ (high PU runs)

- NNPDF 2.1 NLO \otimes NP

CMS-SMP-12-012 + CMS-FSQ-12-031
Comparisons with theory predictions from NLO calculations with NP corrections

Good agreement in central region but progressive worsening towards forward region

- Effect of pert. corrections (PhysRevD.87.094009)
- Higher sensitivity to dynamics in low-\(x\) region

Same trend at 8 TeV

Soon results at 13 TeV!
Searching for BFKL (I)

Going more forward..

Forward-central measurements - Event selection

Proton-proton collisions at 7 TeV: leading central ($|\eta| < 2.8$) jet and leading forward ($3.2 < |\eta| < 4.7$) jet with $p_T > 35$ GeV

General agreement with (most of) predictions based on different evolution equations

Little sensitivity to BFKL effects
Searching for BFKL (II)

Going more forward..

Müller-Navelet jets - Event selection

Proton-proton collisions at 7 TeV:
most forward and most backward jets in $|y| < 4.7$ with $p_T > 35$ GeV

Good agreement with DGLAP-based predictions in every bin of jet rapidity separation

Same conclusion for measurements of terms of Fourier expansion (Nucl.Phys.B776 (2007))

No clear evidence for non-DGLAP behaviour!
Sensitivity to low-x gluon

Low-x gluon distribution affects the forward region!

New tunes available:

CUETP8S1 - CTEQ6L1

CUETP8M1 - NNPDF2.3LO

Very different behaviour at low-\(x\) for the two PDFs

\(N_{ch}\) in fwd region better described by NNPDF tunes

What happens if one modifies by hand the low-x gluon distribution with an increasing density in e.g. HERAPDF?

We do improve the description at large \(\eta\)!

What happens with saturation?
Sensitivity to saturation scale

Total partonic $2 \to 2$ cross section given by:

$$\sigma(p_{T_{\text{min}}}) = \int_{p_{T_{\text{min}}}}^{\infty} dp_T^2 \int_{-\infty}^{\infty} dy \frac{d^2\sigma}{dp_T^2 dy}$$

- Divergent at low p_T
- Behaviour tamed in the MC

Measurement of the integrated cross section as a function of the charged mini-jet p_T

Saturation effects are shown towards low $p_{T_{\text{min}}}$ where the cross section converges

Sensitivity to MC models and tunes:
- standard HEP MC fails to describe the convergence
- Cosmic Ray MC EPOS describes the data best

CMS-PAS-FSQ-12-032 (submitted to PRD)
Hard multiple scatterings become relevant!

- Increasing contribution at the LHC when going to higher energy
- Sizeable background for LHC processes (SM and searches), e.g. Higgsstrahlung
- Information about the structure of the proton, i.e. parton correlations

And...increasing interest and number of entries in Spires!
Choice of physics channels

COMING SOON!

Benchmark for the detection of the DPS

- **Double J/Ψ**
 - $W(\mu\nu)+W(\mu\nu)$
 - $W(\mu\nu)+bb$
 - $Z(\mu\mu)+bb$
 - $bb+jj$
 - $\gamma+3j$
 - $4j$
 - $W(\mu\nu)+jj$
 - $Z(\mu\mu)+jj$
 - $j+UE$
 - $W+UE$
 - $Z(\mu\mu)+UE$

Scale of primary scatter

Scale of secondary scatter(s)

- Semi-hard (Minimum Bias)
- $j+UE$
- $W+UE$
- $Z(\mu\mu)+UE$
Measurement of a four-jet final state

Event selection

Exactly four jets in the final state in $|\eta| < 4.7$:
2 jets: $p_T > 50$ GeV (hard), 2 jets: $p_T > 20$ GeV (soft)

$\Delta_{soft} p_T = \frac{|p_T(i,j,k)|}{|p_T(i,j)| + |p_T(j,k)|}$

$\Delta S = \arccos \left(\frac{\vec{p}_T(i,j,k) \cdot \vec{p}_T(j,l,m)}{|\vec{p}_T(i,j,k)| \cdot |\vec{p}_T(j,l,m)|} \right)$

Soft jets are expected to be produced also by a 2nd scattering

ΔS and $\Delta_{soft} p_T$ sensitive to MPI contribution: \rightarrow ROOM for DPS!

paolo.gunnellini@desy.de
ICNFP - Krete
August 2015
Measurement of a four-jet final state with b-jets

Event selection

Selection of at least four jets with $p_T > 20$ GeV:
- 2 b-jets: $|\eta| < 2.4$
- 2 other jets: $|\eta| < 4.7$

3 pb^{-1} (7 TeV), $pp \rightarrow 2\ b + 2\ j + X$

$\Delta S = \arccos \left(\frac{\vec{p}_T(j^i,j^k) \cdot \vec{p}_T(j^l,j^m)}{|\vec{p}_T(j^i,j^k)| \cdot |\vec{p}_T(j^l,j^m)|} \right)$

Additional jets may be produced also by DPS

CMS-FSQ-13-010

Sensitivity to higher orders..

..but also to MPI!
Measurement of a final state with $\gamma + 3$ jets

Event selection

Selection of a photon and at least three jets in $|\eta| < 2.5$:

- $\gamma + 1$ jet: $p_T > 75$ GeV
- 2 jets: $p_T > 20$ GeV

No difference between predictions with and w/o MPI

Soft jets may also be produced also by a 2^{nd} scattering

CMS-FSQ-12-017

$$\Delta \phi(j_i, j_k) = \phi_i - \phi_k$$

$$\Delta_{soft}^{rel}p_T = \frac{|p_T(j_i, j_k)|}{|p_T(j_i)| + |p_T(j_k)|}$$

$$\Delta S = \arccos\left(\frac{\vec{p}_T(\gamma, j^k) \cdot \vec{p}_T(j^l, j^m)}{|\vec{p}_T(\gamma, j^k)| \cdot |\vec{p}_T(j^l, j^m)|}\right)$$
Measurement of a W+dijet final state

Event selection

Presence of a muon with $p_T > 35$ GeV in $|\eta| < 2.1$ and $E_{T}^{\text{miss}} > 50$ GeV + at least 2 jets: $p_T > 20$ GeV in $|\eta| < 2.0$

The jets are expected to be produced also by a 2nd scattering

JHEP 03 (2014) 032

Sensitivity to DPS!

$\Delta_{\text{soft}}p_T = \frac{|p_T(j_i, j_k)|}{|p_T(j_i)| + |p_T(j_k)|}$

$\Delta S = \arccos \left(\frac{\vec{p}_T(W) \cdot \vec{p}_T(j^l, j^m)}{|\vec{p}_T(W)| \cdot |\vec{p}_T(j^l, j^m)|} \right)$
Extraction of σ_{eff} from W+dijet final state

CONSIDERED OBSERVABLES: normalized ΔS and $\Delta^{rel} p_T$
BACKGROUND: MADGRAPH+P8 with hard MPI above 15 GeV excluded
SIGNAL: Two mixed independent scatterings generated with P8 and MG+P8
DRIVING UNCERTAINTY: model dependence

$$\sigma_{\text{eff}} = \frac{N_{W+0j}}{f_{DPS} \cdot N_{W+2j}} \cdot \sigma_{2j}$$

$$f_{DPS} = 5.5\%,$$

$$\frac{N_{W+0j}}{N_{W+2j}} = 27.8$$

$$\sigma_{\text{eff}} = 20.7 \pm 0.8 \text{ (stat.)} \pm 6.6 \text{ (syst.) \, mb}$$
Extraction of σ_{eff} in four-jet final states

CONSIDERED OBSERVABLES: normalized ΔS and $\Delta^{\text{rel}} p_T$

NEW METHOD USED: inclusive fits to observables

DRIVING UNCERTAINTY: fit uncertainty (no model dependence included)

Minimization of the binned $\chi^2 = \sum O \sum b \in O \frac{(MC^b - DATA^b)^2}{\Delta^2 b}$

A lower value of σ_{eff} improves the description of the measurement

Values of σ_{eff} are compatible between four-jet and W+dijet final states

$\sigma_{\text{eff}} = 19.0^{+4.7}_{-3.0}$ mb
CMS has a very rich QCD program investigating processes at different scales, final states, and phase space sensitive to low-x dynamics

- Good description of QCD processes in central and forward region
- No clear evidence of behaviour disagreeing with DGLAP eq. (yet)
- Saturation of the cross section measured when going to low p_T
- Many DPS-sensitive measurements performed with different final states (W+jets, four-jets, two b- + two other jets...)
 - Need for DPS contribution for better data description

Future: New energy, sensitivity to lower x values, new phase space!
CMS has a very rich QCD program investigating processes at different scales, final states, and phase space sensitive to low-x dynamics

- Good description of QCD processes in central and forward region
- No clear evidence of behaviour disagreeing with DGLAP eq. (yet)
- Saturation of the cross section measured when going to low p_T
- Many DPS-sensitive measurements performed with different final states ($W+$jets, four-jets, two $b- +$ two other jets...)
 - Need for DPS contribution for better data description

Future: New energy, sensitivity to lower x values, new phase space!

THANK YOU!
BACK-UP SLIDES
Choice of the physics channel

\[\sigma_{DPS}^{AB} = \frac{m}{2} \frac{\sigma_A \sigma_B}{\sigma_{\text{eff}}} \]

Internal structure of the proton DPS background for any physics channel

→ Which channels can be used to look for DPS signals?

Published by CMS and/or ATLAS

Published by D0 and/or CDF

How can DPS be detected?
The Compact Muon Solenoid experiment

- Silicon tracker immersed in a 3.8 T magnetic field
- Wide calorimeter coverage
- Excellent jet energy resolution and muon detection efficiency
- Particle Flow technique for jet reconstruction
Introduction: the Underlying Event

- **Hard scattering**
- **Initial and Final State Radiation**
- **Multiple Parton Interaction (MPI)**
- **Beam-beam remnants**

In general, the UE is a softer contribution but.. some MPI can be hard!

Double Parton Scattering

\[
P_A = \frac{\sigma_A}{\sigma_{tot}}
\]

\[
P_B = \frac{\sigma_B}{\sigma_{tot}}
\]

\[
\sigma_{DPS} \propto m^2 P_A P_B \sigma_{tot}^{pp}
\]

\[
\sigma_{DPS}^{AB} = \frac{m \sigma_A \sigma_B}{2 \sigma_{eff}}
\]

\[
\sigma_{eff} \ll \sigma_{tot}^{pp}
\]

Need for correlations!
The inclusive fit method

Experimental difficulties of the template method

→ **How to define the background?**
 - Good to exclude hard MPI..but no such possibility in some generators

→ **How to define exclusive and inclusive events?**
 - \(N_{W+0j} \) and \(N_{W+2j} \) are sensitive to the jet scales

→ **These issues have an impact on the systematic uncertainty!**

 Is there a way out?

The inclusive fit method

- Run predictions for different choices of UE parameters
- Fit the MC predictions to the considered observables
- Improve the data description with the examined model
- (..look at the corresponding \(\sigma_{\text{eff}} \)...)