
Searches for electroweak production of supersymmetric gauginos and sleptons with the ATLAS detector

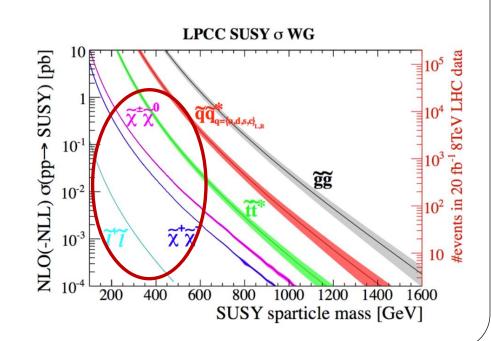
Huan Ren (IHEP,CAS)

on behalf of ATLAS collaboration

Aug.26th, 2015

ICNFP-2015, Crete, Greece

Outline

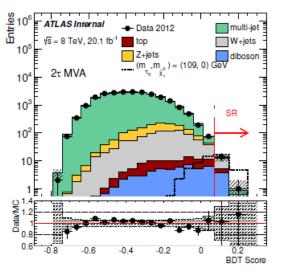

□ SUSY introduction

- Recent ATLAS EWK SUSY results:
 - ✓ Direct stau production
 - ✓ Same-sign chargino pair production via vector boson fusion(VBF)
 - ✓ Compressed spectra in direct production

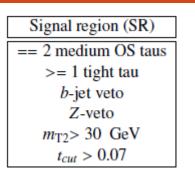
Conclusion

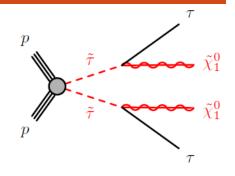
SUSY at LHC

- **□** Remaining issues after higgs-boson discovery:
 - □ Hierarchy problem, Dark Matter, Gravity, No gauge unification at higher scale
- SuperSymmetry(SUSY): very appealing extension of SM to answer these questions.
- Limits of most models probe masses up to ~900 GeV (squarks) and ~1.4 TeV (gluinos).
- SUSY searches in the EWK sector provide a promising approach for new physics :
 - ✓ low production cross-section but low hadronic activity.
- Experimental Parameters
 - ✓ 1 -4 leptons, missing transverse energy (E_T^{miss}), 0-2 jets (or b-jets)


EWK summary paper: ATLAS-SUSY-2014-05

Search for direct stau production in events with at least two hadronic taus and missing transverse momentum using multivariate analysis technique


Update of JHEP 1410 (2014) 96, arXiv:1407.0350 [hep-ex]


Direct stau production

- R-parity conservation scenario
- Experimental signature:
 - 2 opposite-sign taus, E_T^{miss}
- Using multivariate analysis(MVA) technique due to low cross-section
- Main backgrounds:
 - W+jets(1real+1fake)->normalized to data in dedicated WCR
 - multi-jet ->ABCD estimation
 - Other sub-dominant ->simulation

(a) BDT response prior to tcut selection

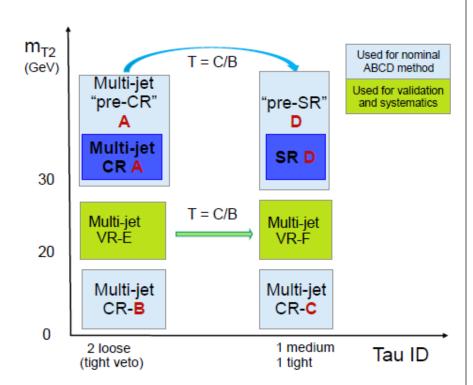
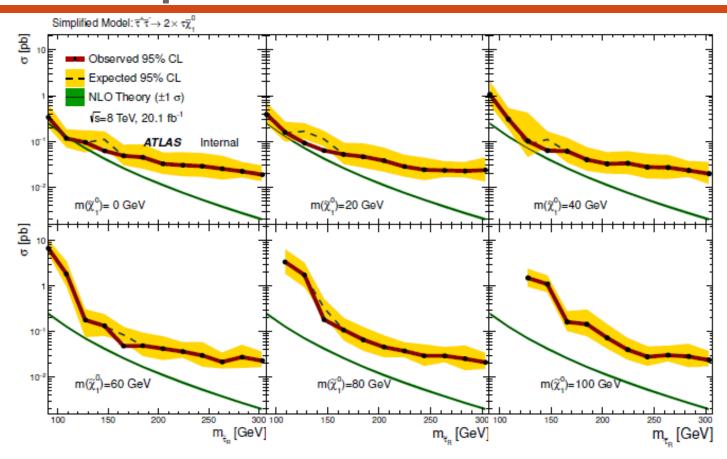
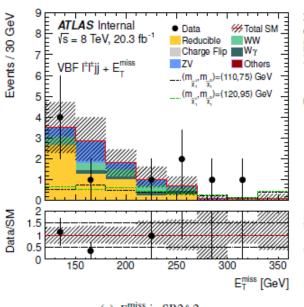
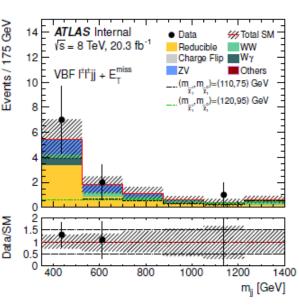



Illustration of the ABCD method

Direct stau production - results

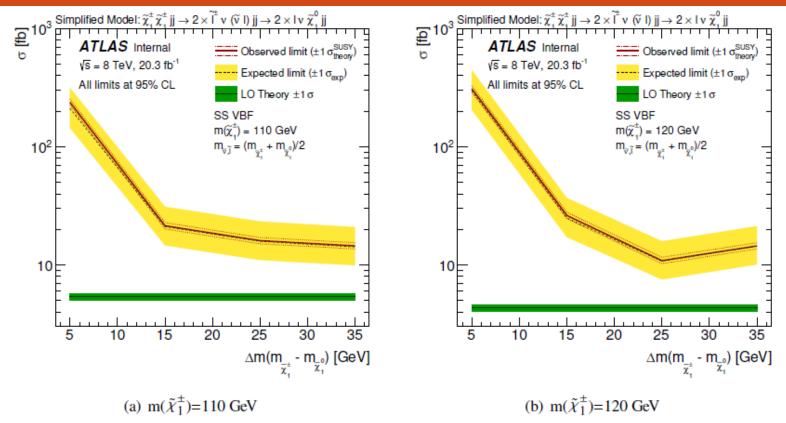

- 95% CL exclusion limits on the cross-section for production of left-handed and right-handed stau pairs for various $\tilde{\chi}_1^0$ masses
- These limits on direct production of stau pairs improve upon the previous limits, particularly for stau masses below ~150 GeV.


EWK summary paper: ATLAS-SUSY-2014-05

Search for supersymmetry in compressed scenarios with two and three leptons and missing transverse momentum in the final state

SS C1C1 production via VBF

- Experimental signature:
 - 2SS-leptons, >=2jets, E_T^{miss}
- SM backgrounds:
 - "prompt" leptons (diboson, H) -> MC simulation
 - Non-prompt(Fake) leptons(W+jets, $t\bar{t}$) -> Fake Factor Method
 - Charge-misID leptons -> measured from dedicated control region(CR)



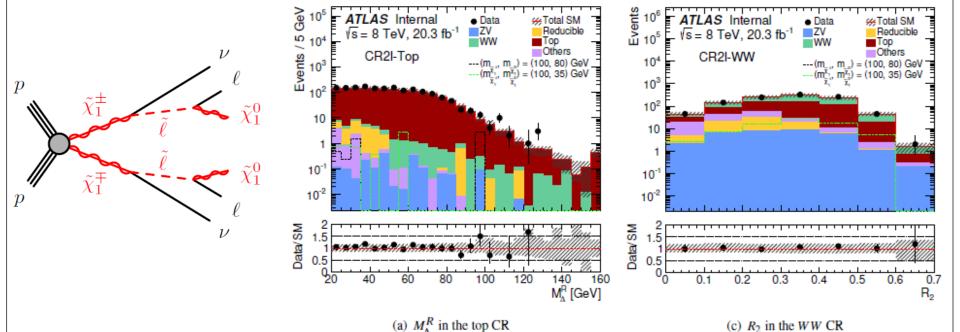
q	$\frac{j}{\nu/\ell}$
W^{\sim}	$\tilde{\ell}/\tilde{\tilde{\nu}} < \tilde{\ell}/\nu$
$W_{\sim}^{X_1}$	$\tilde{\chi}^{\pm}_{\tilde{\chi}^{\pm}}$
q	$\tilde{\chi}_1^{\pm}$ j ℓ/ν j

	SR2ℓ-2
ℓ flavor/sign	$\ell^{\pm}\ell^{\pm}, \ell^{\pm}\ell'^{\pm}$
jets	≥ 2
central b-jets	veto
$E_{\rm T}^{\rm miss}$ [GeV]	> 120
$m_{\rm T2}$ [GeV]	< 40
$m_{\ell\ell}$ [GeV]	< 100
$p_{\rm T}^{\rm jet1}$ [GeV]	> 95
m_{ij} [GeV]	> 350
$\eta^{ m jet1} \cdot \eta^{ m jet2}$	< 0
$ \Delta \eta_{jj} $	> 1.6
$p_{\mathrm{T}}^{\ell\ell}/E_{\mathrm{T}}^{\mathrm{miss}}$	< 0.4
$p_{\rm T}^{\rm jet 1}/E_{\rm T}^{\rm miss}$	< 1.9
$p_{\mathrm{T}}^{\ell\ell}/p_{\mathrm{T}}^{jj}$	< 0.35

Signal selections

SS C1C1 production via VBF - results

- 95% CL exclusion limits on the cross-section for VBF production of $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_1^{\pm}$. The limits have been set with respect to the mass difference between the $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_1^{0}$.
- The best observed upper limit is found for $\tilde{\chi}_1^{\pm}$ mass of 120 GeV and m($\tilde{\chi}_1^{\pm}$)-m($\tilde{\chi}_1^{0}$) = 25 GeV.


Slightly stronger sensitivity for higher $\tilde{\chi}_1^{\pm}$ masses

EWK summary paper: ATLAS-SUSY-2014-05

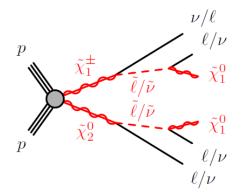
Compressed scenarios

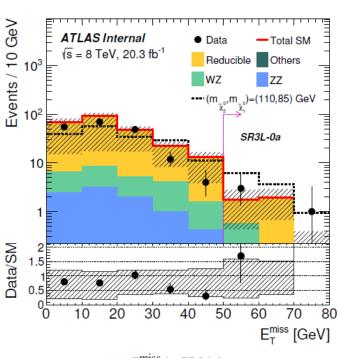
- SUSY scenarios which have small mass difference between sparticles and neutralinos:
 - Final state with low-momentum leptons
- Difficulties:
 - Low mass splitting
 - Soft decay products
 - SM-like
- Re-optimized ATLAS analysis targeting compressed spectra:
 - 2 OS light leptons
 - 2 SS light leptons
 - 3 light leptons

OS 21 - event selection & BG estimation

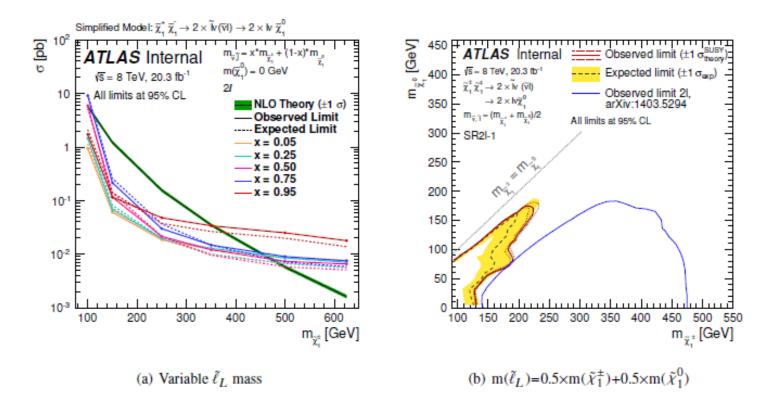
- Experimental signature: 20S-lepton, E_T^{miss}
- Two SRs requiring a high pT ISR jets, sensitive to small and moderate mass splittings
- Discriminate variable "super-razor" used
- SM backgrounds:
 - irreducible background (WW, top, ZV) -> normalized MC in dedicated CRs
 - Reducible background (all fake sources) -> Matrix Method
 - Others (Higgs, Z+jets) -> MC simulation

SS 2I - event selection & BG estimation

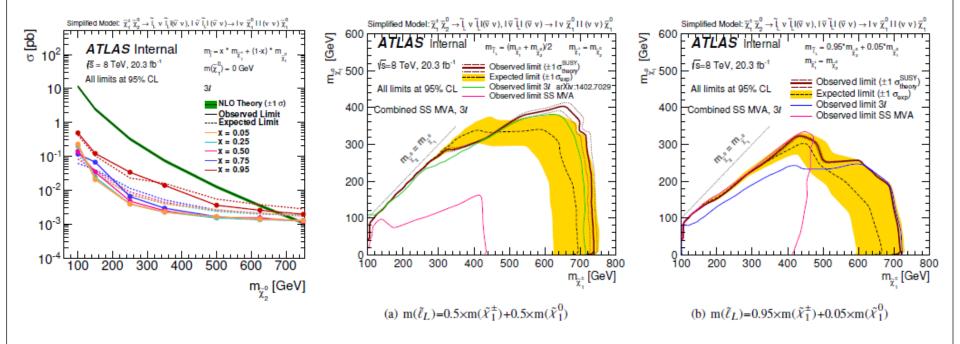

- Experimental signature: 2SS-lepton, E_T^{miss}
- Eight BDTs are trained to cover four different mass splittings for $m(\tilde{\chi}_1^{\pm}) m(\tilde{\chi}_0^{\pm}) = 20$, 35, 60, 100GeV.
- One region for each mass splitting requires an ISR jet, the others apply a jet-veto.
- SM backgrounds:
 - "prompt" leptons (diboson, triboson, $t\bar{t}V$, tZ, H) -> MC simulation
 - Non-prompt(Fake) leptons -> Matrix Method(except $W\gamma$ by MC prediction)
 - Charge-Flip leptons -> charge misID rate measured from CRs


3 - event selection & BG estimation

Experimental signature:

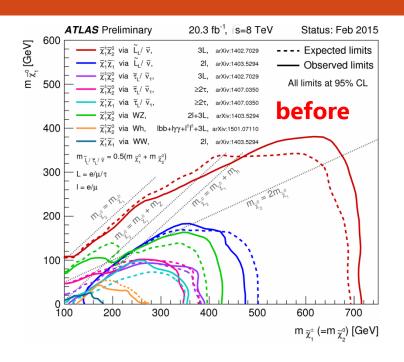

==3leptons(1 same-flavor OS pair), E_T^{miss}

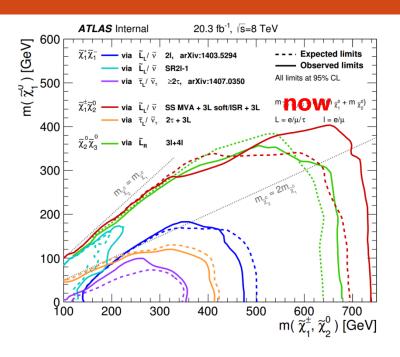
- 2 SRs with low pT leptons to target mass splittings of 4-15 and 15-25GeV, 2 SRs which request a jet with pT>50GeV to target ISR events for both splitting regions
- SM backgrounds:
 - Irreducible (prompt) leptons
 - ->diboson, triboson, H -> MC simulation
 - Reducible (Fake) leptons
 - -> V+jets, WW, top, $t\bar{t}$ -> Matrix Method


results and interpretation - OS 2

 Re-optimized analysis nicely complements the already published one in the region of low mass splittings close to the diagonal.

2015/8/26


results and interpretation - SS2| & 3|

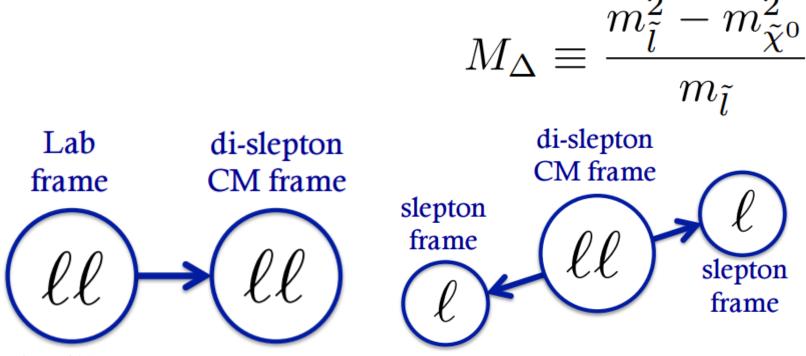


- Re-optimized analysis nicely complements the already published one in the region of low mass splittings close to the diagonal.
- The combination of the new analyses give an improved sensitivity to compressed scenarios up to $\tilde{\chi}_1^{\pm}$ masses of 250 GeV.

2015/8/26

Conclusion

■ Various searches in EWK SUSY sector at ATLAS:

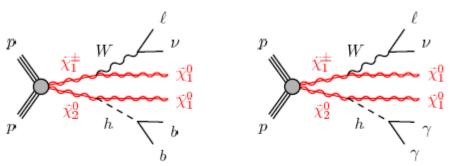

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

- Newly updated results for EWK SUSY searching presented.
- No significant excess observed beyond SM expectation.
- Higher sensitivity and expanding exclusion/discovery contour is expected with 13/14TeV LHC RUN2 data

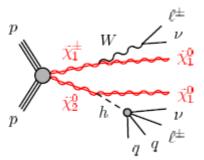
Extra slides

Super razor variables

- Iteratively transformed observable momenta.
- At each step, determine the next transformation by making boost invariant guesses for unknown parameters.
 - ✓ 1st transformation: extract variable sensitive to invariant mass of total event
 - ✓ 2nd transformation: extract variable sensitive to invariant mass of squark

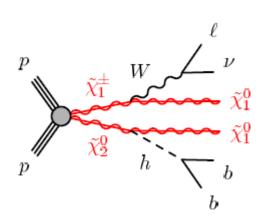

Search for direct pair production of a chargino and a neutralino decaying to the 125 GeV Higgs boson

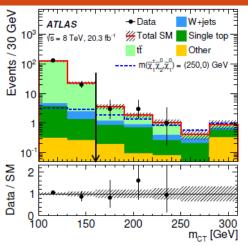
Eur.Phys.J.C(2015)

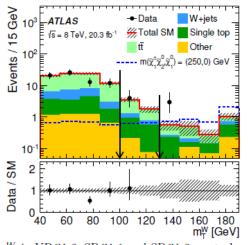

http://arxiv.org/abs/1501.07110

Electroweakino SUSY Searches via higgs decay

- Direct pair production of $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ may be the dominant production of supersymmetric particles if the superpartners of the gluon and quarks are heavier than a few TeV.
- The decay to the Higgs boson dominants when:
 - ✓ the mass splitting between the two lightest neutralinos is larger than the Higgs boson mass
 - \checkmark the higgsinos are much heavier than the winos, causing the composition of the $\tilde{\chi}_1^\pm$ and $\tilde{\chi}_2^0$ to be wino-like and nearly mass degenerate.
- The analysis is based on 20.3 fb-1 of \sqrt{S} = 8 TeV pp collision data.




(a) One lepton and two b-quarks channel (b) One lepton and two photons channel



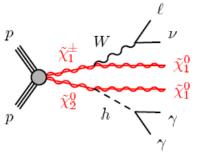
(c) Same-sign dilepton channel

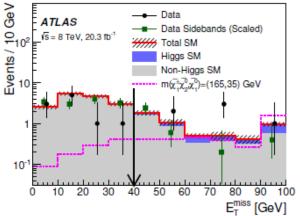
Ibb channel - event selection & bkg estimation

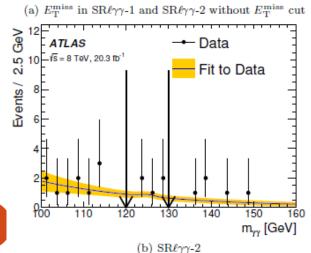
(a) $m_{\rm CT}$ in CR ℓbb -T, SR ℓbb -1 and SR ℓbb -2, central m_{bb} bin (c) $m_{\rm T}^W$ in VR ℓbb -2, SR ℓbb -1 and SR ℓbb -2, central m_{bb} bin

- Experimental signature: 2b-jets, 1lepton, E_T^{miss}
- Discriminating variables: E_T^{miss} , m_{CT} , m_T^W

$$m_{\rm CT} = \sqrt{(E_{\rm T}^{b_1} + E_{\rm T}^{b_2})^2 - |\mathbf{p}_{\rm T}^{b_1} - \mathbf{p}_{\rm T}^{b_2}|^2},$$

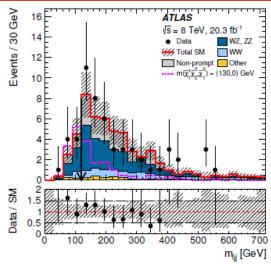

$$m_{\mathrm{T}}^{W} = \sqrt{2E_{\mathrm{T}}^{\ell}E_{\mathrm{T}}^{\mathrm{miss}} - 2\mathbf{p}_{\mathrm{T}}^{\ell} \cdot \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}},$$


- 2 Signal Regions(SR) defined for the channel in 5 bins of M_{bb}
- Main background $t\bar{t}$ and W+jets taken from simulation and normalized to data from dedicated Control Regions(CR)
- Multi-jet BG is estimated from data using Matrix Method


	SRlbb-1	$SR\ell bb$ -2	CRℓbb-T	CRℓbb-W	VRℓbb-1	VRℓbb-2
$n_{ m lepton} \ n_{ m jet}$	1 2–3	1 2–3	$^{1}_{2-3}$	1 2	1 2–3	1 2–3
$n_{b ext{-jet}}$ $E_{ ext{T}}^{ ext{miss}}$ [GeV] $m_{ ext{CT}}$ [GeV]	$ \begin{array}{r} 2 \\ > 100 \\ > 160 \\ 100-130 \end{array} $	2 > 100 > 160 > 130	2 > 100 $100-160$ > 100	1 > 100 > 160 > 40	$\begin{array}{c} 2 \\ > 100 \\ 100 - 160 \\ 40 - 100 \end{array}$	$ \begin{array}{r} 2 \\ > 100 \\ > 160 \\ 40-100 \end{array} $

2015/8/26

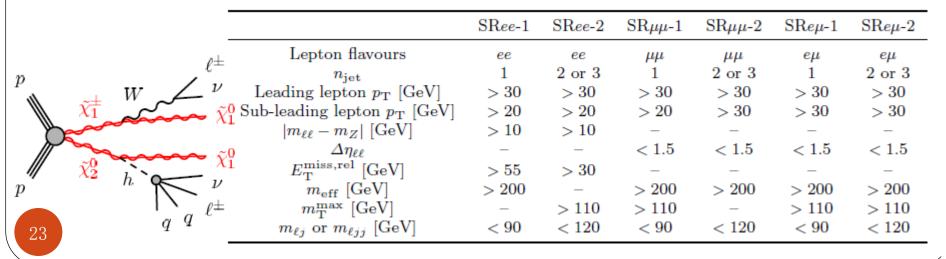
$|\gamma \gamma|$ channel – event selection

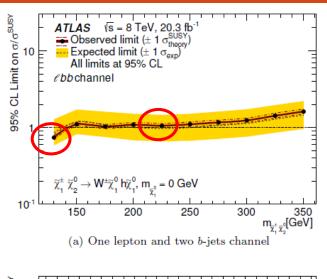

- Experimental signature:
 - 2γ , 1lepton, E_T^{miss}
- Diphoton or single-lepton trigger
- 2SRs defined for this channel
- non-Higgs SM BG
 - template fit to the full $M_{\gamma\gamma}$ distribution
- Higgs SM BG:
 - simulation

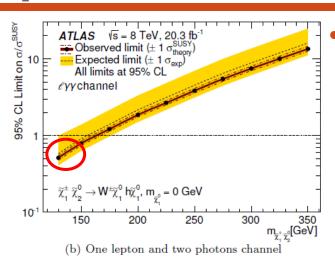
$$m_{\mathrm{T}}^{W\gamma_i} = \sqrt{(m_{\mathrm{T}}^W)^2 + 2E_{\mathrm{T}}^W E_{\mathrm{T}}^{\gamma_i} - 2\mathbf{p}_{\mathrm{T}}^W \cdot \mathbf{p}_{\mathrm{T}}^{\gamma_i}},$$

	$SR\ell\gamma\gamma$ -1	$SR\ell\gamma\gamma$ -2	$VR\ell\gamma\gamma$ -1	$VR\ell\gamma\gamma$ -2
$n_{ m lepton}$	1	1	1	1
n_{γ}	2	2	2	2
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 40	> 40	< 40	
$\Delta \phi(W,h)$	> 2.25	> 2.25		< 2.25
$m_{\mathrm{T}}^{W\gamma_1}[\mathrm{GeV}]$	> 150	< 150		
1	and	or		
$m_{\mathrm{T}}^{W\gamma_2}[\mathrm{GeV}]$	> 80	< 80		

SSII channel– object selection

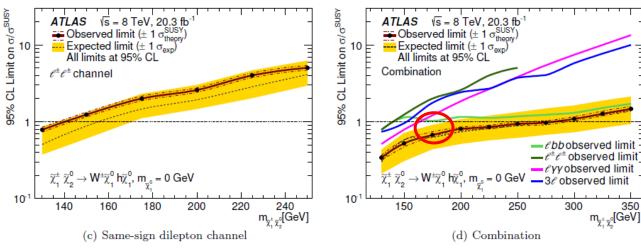

- Experimental signature:
 - 2jets, SS2I, E_T^{miss}
- Dilepton trigger
- SM background:
 - "prompt" leptons (WZ/ZZ) -> MC simulation
 - Non-prompt(Fake) leptons -> Matrix Method
 - Other: charge-misID leptons -> misID probability measured from data


(f) $m_{\ell jj}$ in SR $\ell\ell$ -2 without $m_{\ell jj}$ cut

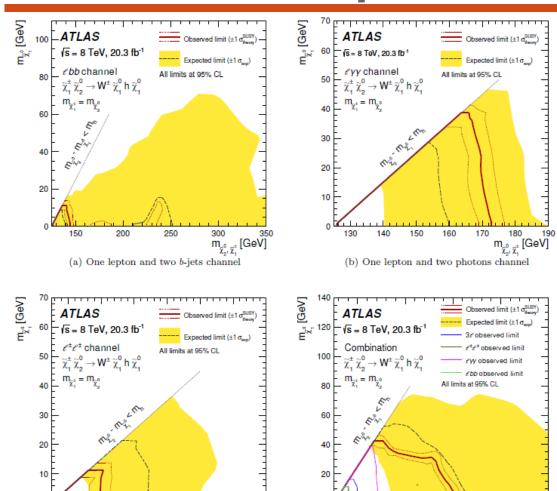

$$E_{\mathrm{T}}^{\mathrm{miss,rel}} = \begin{cases} E_{\mathrm{T}}^{\mathrm{miss}} & \text{if } \Delta \phi > \pi/2, \\ E_{\mathrm{T}}^{\mathrm{miss}} \sin{(\Delta \phi)} & \text{if } \Delta \phi < \pi/2, \end{cases}$$

Selection requirements for the signal regions of the same-sign dilepton channel.

results and interpretation



- Region m($\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^{0}$) < 140 GeV is largely due to SRIbb-1, while the $\gamma\gamma$ channel being the best:
 - targeting models with small mass splitting between the neutralinos
- Region m($\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^{0}$) = 240 GeV is driven by SRIbb-2 designed for larger mass splitting.


 $m_{\chi^{\pm}\chi^{0}}[GeV]$

Region m($\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^{0}$) = 170 GeV all channel shows close sensitivity.

Observed and expected 95% CL upper limits on the X-section normalized by the simplified model prediction as a function of the common mass m($\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^{0}$) at m($\tilde{\chi}_1^{0}$)=0.

results and interpretation

 $m_{\chi_{\omega}^{0}, \chi_{\omega}^{\pm}}$ [GeV]

• The combination of these independent searches improves the sensitivity significantly by extending the 95% CL exclusion region to $m(\tilde{\chi}_1^0)=250$ GeV.

• Observed and expected 95% CL exclusion region in the mass plane of m($\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^{0}$) v.s. m($\tilde{\chi}_1^{0}$).

m_{ℤ₀, ℤ⁺} [GeV]

250

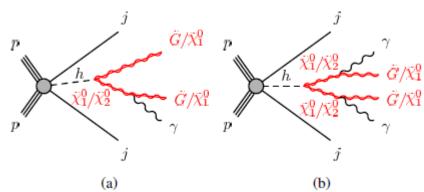
(d) Combination

150

200

140

150

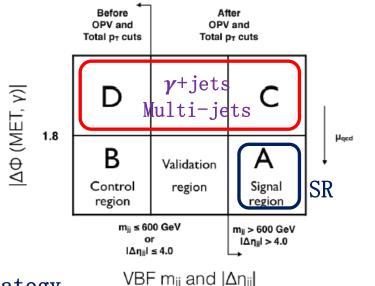

(c) Same-sign dilepton channel

Search for exotic Higgs-boson decays in events with at least one photon, missing transverse momentum, and two forward jets

ATLAS-CONF-2015-001

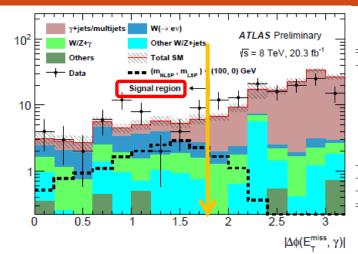
Searches via exotic higgs decaying to $\gamma(\gamma\gamma) + LSP$

- Depending on the Higgs-boson production cross section, BF(h→BSM) could be O(50%). SUSY extensions to the SM can explain the mass of the Higgs-boson and address the hierarchy problem.
- In certain extensions the Higgs-boson is predicted to decay into SUSY particles.
- □ Gauge mediated supersymmetry breaking (GMSB) model:
 - H decay to a nearly massless gravitino $\widetilde{G}(LSP)$ and a $\widetilde{\chi}_1^0$ (NLSP)
 - M(h)/2 < M($\tilde{\chi}_1^0$) < M(h)
- **Next-to-Minimal Supersymmetric Standard Models (NMSSM):**
 - H decay to a nearly massless $\tilde{\chi}_2^0$ (NLSP) and a $\tilde{\chi}_1^0$ (LSP)
 - M(h)/2 < M($\tilde{\chi}_2^0$) < M(h)
- □ Case also considered as fig.b:
 - Diphoton-MET signature
 - $M(\tilde{\chi}_1^0) < M(h)/2 \text{ or } M(\tilde{\chi}_2^0) < M(h)/2$



event selection & bkg estimation

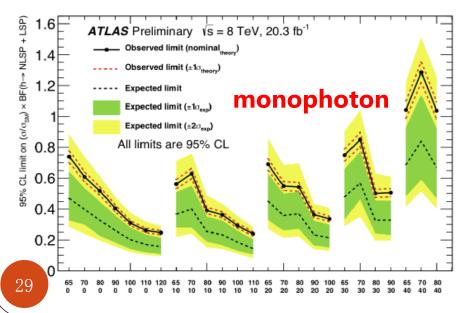
- **□** Experimental signature:
 - >=1photon,
 - **VBF** production (2 forward well separated jets)
- Most selection requirements were optimized using the Validation Region
- □ SM BG:
 - \bullet γ +jets, multi-jets, W/Z+ γ , W/Z+jets, $W \rightarrow ev$, others (WW, WZ, ZZ, ttbar)
- \square Dominant BG from γ +jets, multi-jets background estimated using data-driven **ABCD**
- Other BG taken from simulation and normalized to data in dedicated CR.


Signal selections

Requirement	Data	$(m_{NLSP}, m_{LSP}) = (100, 0) \text{ GeV signal}$
Data quality and trigger	1.53×10^{7}	337±4
Good vertex	1.53×10^{7}	336±4
$E_T^{\rm miss} > 50 {\rm GeV}$	1.26×10^{7}	279±3
Selected photon $p_T > 40 \text{ GeV}$	7.41×10^{5}	128±2
VBF $m_{jj} > 400$ GeV and $ \Delta \eta_{jj} > 3.0$	3.17×10^{4}	96.4±1.9
VBF jet $p_T \ge 40 \text{ GeV}$	6870	58.0±1.5
Lepton veto	6040	57.2±1.5
≤ 1 non-VBF jet	4620	50.4±1.4
$ \Delta \phi(E_T^{\text{miss}}, VBF jet) _{min} > 1.4$	600	30.1±1.1
$ \Delta \phi(E_T^{\text{miss}}, non - VBF jet) _{min} < 2.0$	565	28.2±1.0
OPV	425	27.6±1.0
$ \vec{p}_{T}^{TOT} \geq 50 \text{ GeV}$	337	26.9±1.0
$ \Delta \phi(E_{\rm T}^{\rm miss}, \gamma) \le 1.8$	100	21.6±0.9
VBF $m_{jj} > 600$ GeV and $ \Delta \eta_{jj} > 4.0$	50	14.6±0.7

results

Events / 0.2

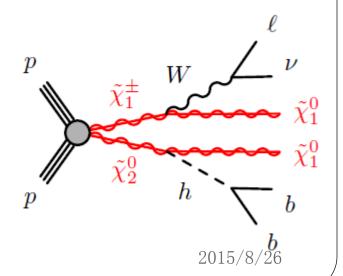


BG yield and Data in SR and BG control regions

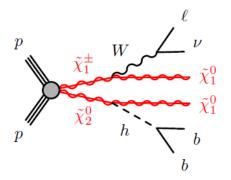
	SR	Region B	γ+jets A	e A	lvy A
$W(\rightarrow ev)$	$10.7 \pm 0.7 \pm 1.5$	$24.5 \pm 1.0 \pm 3.3$	$5.2 \pm 0.4 \pm 0.6$	$956 \pm 53 \pm 133$	$0.02 \pm 0.01 \pm 0.00$
$W(\rightarrow \mu \nu)$	$0.21 \pm 0.1 \pm 0.24$	$1.4 \pm 1.3 \pm 0.3$	$0.1 \pm 0.06 \pm 0.06$	0	$0.66 \pm 0.17 \pm 0.09$
$W(\to au u)$	$4.2 \pm 0.8 \pm 0.6$	$4.7 \pm 2.6 \pm 2.4$	$1.7 \pm 0.6 \pm 0.8$	$62 \pm 3.4 \pm 37$	$0.9 \pm 0.5 \pm 0.33$
$W(\rightarrow l\nu)\gamma$	$7.2 \pm 0.5 \pm 2.3$	$11.9 \pm 0.6 \pm 4.1$	$3.6 \pm 0.3 \pm 1.2$	$4.0 \pm 0.3 \pm 0.2$	$6.0 \pm 0.4 \pm 0.4$
Z+jets	$0.52 \pm 0.28 \pm 0.54$	$3.7 \pm 3.5 \pm 3.5$	0	$12.3 \pm 7.1 \pm 2.9$	0
$Z+\gamma$	$0.61 \pm 0.05 \pm 0.2$	$2.6 \pm 1.4 \pm 1.4$	$1.1 \pm 0.8 \pm 0.8$	0	$0.37 \pm 0.37 \pm 0.09$
Others	$0.68 \pm 0.4 \pm 0.26$	$2.6 \pm 0.8 \pm 0.6$	$0.8 \pm 0.4 \pm 0.6$	$99.8 \pm 5.1 \pm 4.0$	$2.0 \pm 0.7 \pm 0.8$
γ +jets and multijet	$13.9 \pm 1.7 \pm 3.5$	$26.6 \pm 2.2 \pm 0.8$	$31.5 \pm 6.7 \pm 2.0$	$37 \pm 11 \pm 36$	0
Total background	$38.0 \pm 2.2 \pm 4.5$	$78 \pm 5.4 \pm 7$	$44 \pm 6.8 \pm 2.8$	$1170 \pm 55 \pm 143$	$10.0 \pm 1 \pm 0.9$
Data	50	78	44	1079	12
(m_{NLSP}, m_{LSP}) (100, 0) GeV	14.0 ± 0.7 ± 1.2	$8.5 \pm 0.6 \pm 0.6$	$3.0 \pm 0.3 \pm 0.5$	$0.3 \pm 0.1 \pm 0.1$	$0.11 \pm 0.06 \pm 0.07$

1.1 σ excess is observed

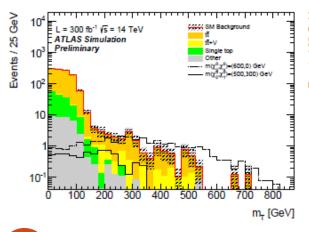
- Due to excess in SR, observed limits are higher than expected ones.
- Strong upper limits are obtained in $\gamma\gamma + E_T^{miss}$ final state also.

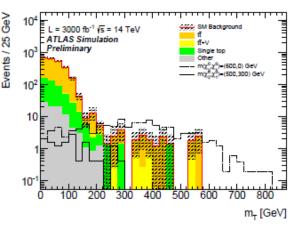


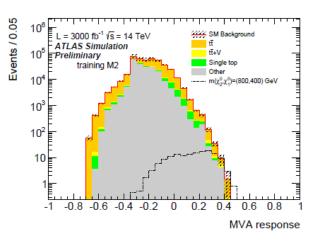
Upgrade study


Prospect for direct pair production of a chargino and a neutralino decaying via W and h in final states with one lepton, two b-jets and missing transverse momentum

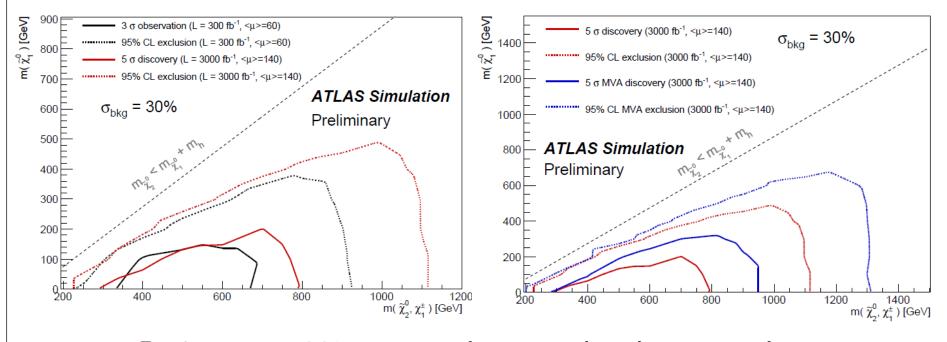
ATL-PHYS-PUB-2015-032




Wh production – event selection & background


- Experimental signature:
 - 2b-jets, 1lepton, E_T^{miss}
- Cut-and count for LHC scenario
- BDT considered for HL-LHC scenario:

Selection	SRA	SRB	SRC	SRD	
# of leptons (e, μ)	1				
# b-tagged jets	2				
m_{bb} [GeV]	$105 < m_{bb} < 135$				
# jets	2 or 3				
m_{CT} [GeV]	> 200	> 200	> 300	> 300	
m_{T} [GeV]	> 200	> 250	> 200	> 250	
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 300	> 350	> 400	> 450	
$\langle \mu \rangle = 60,300 \text{fb}^{-1} \text{scenario}$	yes	yes	-	_	
$\langle \mu \rangle = 140,3000 \text{fb}^{-1} \text{scenario}$	-	-	yes	yes	



(a) $300 \text{ fb}^{-1} < \mu > = 60 \text{ scenario}$ 1 CNFP - 2015

(b) $3000 \text{ fb}^{-1} < \mu > = 140 \text{ scenario}$

Wh production – sensitivity

 $Z_n = \sqrt{2}erf^{-1}(1-2p)$ 30% systematic uncertainty in assumption

- Expected 95% exclusion and discovery contours in the m($\tilde{\chi}_1^0$) v.s. m($\tilde{\chi}_1^{\pm}$, $\tilde{\chi}_2^0$) plane.
- Comparing the cut and count and MVA approaches BDT.
- An increase of integrated luminosity from 300 fb-1 to 3000 fb-1 extends significantly the discovery sensitivity potential for $\tilde{\chi}_1^{\pm}\tilde{\chi}_2^0$ production and the exclusion sensitivity by about 200 GeV. $_{2015/8/26}$