Recent Borexino results and prospects for near future

ICNFP 2015
4th International Conference on New Frontiers in Physics
Crete, Greece – 23-30 Aug 2015

Davide D’Angelo
on behalf of the Borexino Collaboration
Università degli Studi di Milano
Istituto Nazionale di Fisica Nucleare, sez. di Milano
the Borexino Collaboration
Energy production in the sun

PP-chain
>99% energy production
5 ν species

CNO-cycle
<1% energy production
3 ν species
Why Borexino?
Why Borexino?

Borexino design goal: 7Be

Borexino design threshold ~ 250keV
The Borexino Detector

Neutrino electron scattering
\(\nu_e \rightarrow \nu_e \)

Scintillator:
270 + PC+PPO (1.4 g/l)

Nylon vessels:
(125 \(\mu \)m thick)
Inner: 4.25 m
Outer: 5.50 m (radon barrier)

Stainless Steel Sphere:
- 2212 PMTs
- \(\sim 1000 \) m\(^3\) buffer of pc +dmp (light quenched)

Water Tank:
\(\gamma \) and \(n \) shield
\(\mu \) water Č detector
208 PMTs in water
2100 m\(^3\)

Carbon steel plates

20 legs
Experimental site

120 Km from Rome

External Labs

Laboratori Nazionali del Gran Sasso

Assergi (AQ)
Italy
1400m of rock shielding
~3800 m.w.e.
Borexino data taking campaign

- May 2007
- May 2010

Preparation

Phase I

- (First) solar 7Be-ν measurement
- 7Be-ν day-night asymmetry
- Low-threshold 8B-ν
- First pep-ν detection
- Best upper limit on CNO-ν
- First geo-ν observation at $> 4\sigma$
- Muon seasonal variations
- Limits on rare processes

Purification

Phase II

- Measurement of pp-ν flux
- Measurement of CNO-ν flux
- Short-base ν oscillations: SOX

Neutrons and other cosmogenics
- 7Be-ν seasonal modulation
- Updated geo-ν flux
Borexino backgrounds

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Typical</th>
<th>Required</th>
<th>Before purification</th>
<th>After purification</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{238}U</td>
<td>$2 \cdot 10^{-5}$ (dust)</td>
<td>$\leq 10^{-16}$ g/g</td>
<td>$(5.3 \pm 0.5) \cdot 10^{-18}$ g/g</td>
<td>$< 0.8 \cdot 10^{-19}$ g/g</td>
</tr>
<tr>
<td>^{232}Th</td>
<td>$2 \cdot 10^{-5}$ (dust)</td>
<td>$\leq 10^{-16}$ g/g</td>
<td>$(3.8 \pm 0.8) \cdot 10^{-18}$ g/g</td>
<td>$< 1.0 \cdot 10^{-18}$ g/g</td>
</tr>
<tr>
<td>$^{14}\text{C}/^{12}\text{C}$</td>
<td>10^{-12} (cosmogenic)</td>
<td>$\leq 10^{-18}$</td>
<td>$(2.69 \pm 0.06) \cdot 10^{-18}$ g/g</td>
<td>unchanged</td>
</tr>
<tr>
<td>^{222}Rn</td>
<td>100 atoms/cm3 (air)</td>
<td>≤ 10 cpd/100t</td>
<td>~ 1 cpd/100t</td>
<td>unchanged</td>
</tr>
<tr>
<td>^{40}K</td>
<td>$2 \cdot 10^{-6}$ (dust)</td>
<td>$\leq 10^{-18}$ g/g</td>
<td>$\leq 0.4 \cdot 10^{-18}$ g/g</td>
<td>unchanged</td>
</tr>
<tr>
<td>^{85}Kr</td>
<td>1 Bq/m3 (air)</td>
<td>≤ 1 cpd/100 t</td>
<td>(30 ± 5) cpd/100 t</td>
<td>≤ 5 cpd/100 t</td>
</tr>
<tr>
<td>^{39}Ar</td>
<td>17 mBq/m3 (air)</td>
<td>≤ 1 cpd/100 t</td>
<td>$<< ^{85}\text{Kr}$</td>
<td>$<< ^{85}\text{Kr}$</td>
</tr>
<tr>
<td>^{210}Po</td>
<td>not specified</td>
<td></td>
<td>$(\sim 80) \sim 20$ cpd/100 t</td>
<td>unchanged</td>
</tr>
<tr>
<td>^{210}Bi</td>
<td>not specified</td>
<td></td>
<td>$(\sim 20) \sim 70$ cpd/100 t</td>
<td>(20 ± 5) cpd/100 t</td>
</tr>
</tbody>
</table>
Borexino calibration

2008-2011: 4 internal + 1 external calibration campaigns

Energy scale uncertainty in the range $0.2 \div 2$ MeV is better than 1.5%

Using 184 points of Rn calibration data, the Fiducial Volume uncertainty was taken to $-1.3\% \pm 0.5\%$
7Be neutrino flux and A_{DN}

$46.0 \pm 1.5 \text{(stat)}^{+1.5}_{-1.6} \text{(syst)} / d / 100t$

for the first time the experimental error (4.8%) is smaller than theoretical error (7%)

$\phi_{Be} = (3.10 \pm 0.15) \times 10^9 \text{ cm}^{-2}\text{s}^{-1}$

$P_{ee} = 0.51 \pm 0.07$ at 0.862 MeV

$A_{DN} = \frac{N - D}{(N + D)/2} = 0.001 \pm 0.012 \text{(stat)} \pm 0.007 \text{(sys)}$

Then solar neutrino results with Borexino can isolate the LMA region without the Kamland antineutrino data

8B flux at 3MeV

<table>
<thead>
<tr>
<th>Energy [MeV]</th>
<th>Rate $[c/d/100 \text{ t}]$</th>
<th>$\Phi_{\text{exp}}^{\text{ES}} [10^6 \text{ cm}^{-2}\text{s}^{-1}]$</th>
<th>$\Phi_{\text{exp}}^{\text{ES}} / \Phi_{\text{th}}^{\text{ES}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0–16.3</td>
<td>$0.22 \pm 0.04 \pm 0.01$</td>
<td>$2.4 \pm 0.4 \pm 0.1$</td>
<td>0.88 ± 0.19</td>
</tr>
<tr>
<td>5.0–16.3</td>
<td>$0.13 \pm 0.02 \pm 0.01$</td>
<td>$2.7 \pm 0.4 \pm 0.2$</td>
<td>1.08 ± 0.23</td>
</tr>
</tbody>
</table>
pep flux and CNO limits

\[R = (3.1 \pm 0.6_{\text{stat}} \pm 0.3_{\text{sys}}) \text{ cpd/100 t} \]

\[\Phi^{\text{LMA}}_{\text{pep}} = (1.6 \pm 0.3) \times 10^8 \text{ cm}^{-2} \text{ s}^{-1} \]

\[P_{ee} = 0.62 \pm 0.17 \text{ at 1.44 MeV} \]

\[R < 7.1 \text{ cpd/100 t (95 \% C.L.)} \]

\[\Phi^{\text{LMA}}_{\text{CNO}} < 7.7 \times 10^8 \text{ cm}^{-2} \text{ s}^{-1} \text{ (95 \% C.L.)} \]
pp neutrino analysis

Neutrino energy: < 420keV
Electron recoil energy: < 264keV
This analysis threshold: 165keV
(cmp. design thresh. 250KeV, radiochem. exp. 233keV)
14C background issues

Pure 14C β spectrum

- Trigger problem:
 - Total rate: \(\sim 30 \text{ Hz for } E_{th} \sim 50 \text{ keV} \)
 - 14C expected rate: (10-100) c/s/100ton
 - Acquisition window: 16\(\mu \)s
 - Events with E close to \(E_{th} \): often problematic

- Solution for 14C close to \(E_{th} \): Trigger with two random events: 2. event (14C) unaffected by \(E_{th} \)
 → Spectral shape threshold: 100 keV → 50 keV
 → 14C rate: \((40\pm1) \text{ c/s/100ton} \)

14C pile-ups

- Pile-up problem:
 - 14C overlap with PMT dark rate, 14C, 210Po
 → Spectral shape hardly known
 → Position reco. largely fails
 Expected rate: (6-600) c/d/100ton

- Solution: Generate ‘synthetic’ pile-ups:
 - Overlap artificially uncorrelated data with regular events
 → 14C pile-up rate: \((154\pm10) \text{ c/d/100ton} \)
pp neutrino results

Rate = $144 \pm 13\,(\text{stat}) \pm 10\,(\text{sys})$ c/d/100ton

Null hypothesis rejection: 10σ

Expected: 131 ± 2 c/d/100ton

Interpretations:
1. If you believe SSM:
 - confirms MSW-LMA
2. If you believe MSW-LMA:
 - confirms SSM
3. If you believe both:
 - the sun is stable over 10^5 time span

\begin{tabular}{|l|l|}
\hline
Parameter & Systematics: \\
\hline
energy estimator & $\pm 7\%$ \\
fit energy range & \\
data selection & \\
pile-up evaluation & \\
\hline
fiducial mass & $\pm 2\%$ \\
\hline
\end{tabular}
P_{ee} after Borexino

In the transition region:
Is there room for new physics?

Still missing: CNO neutrinos

Two approaches to transition region:
1. Reduce error on pep (and ^7Be) flux
2. Lower threshold on ^8B
 (upturn not yet observed by SNO-LETA)

Borexino will work on both sides
Geo-neutrinos

\[\Phi_{\bar{\nu}} \sim 10^6 \text{cm}^{-2}\text{s}^{-1} \]

<table>
<thead>
<tr>
<th>Decay</th>
<th>(T_{1/2}) [10^9 yr]</th>
<th>(E_{\text{max}}) [MeV]</th>
<th>(Q) [MeV]</th>
<th>(\varepsilon_{\bar{\nu}}) [kg^{-1}s^{-1}]</th>
<th>(\varepsilon_H) [W/kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{238}\text{U} \rightarrow ^{206}\text{Pb} + 8, ^{4}\text{He} + 6, e + 6, \bar{\nu})</td>
<td>4.47</td>
<td>3.26</td>
<td>51.7</td>
<td>(7.46 \times 10^7)</td>
<td>(0.95 \times 10^{-4})</td>
</tr>
<tr>
<td>(^{232}\text{Th} \rightarrow ^{208}\text{Pb} + 6, ^{4}\text{He} + 4, e + 4, \bar{\nu})</td>
<td>14.0</td>
<td>2.25</td>
<td>42.7</td>
<td>(1.62 \times 10^7)</td>
<td>(0.27 \times 10^{-4})</td>
</tr>
<tr>
<td>(^{40}\text{K} \rightarrow ^{40}\text{Ca} + e + \bar{\nu} \text{ (89%)})</td>
<td>1.28</td>
<td>1.311</td>
<td>1.311</td>
<td>(2.32 \times 10^8)</td>
<td>(0.22 \times 10^{-4})</td>
</tr>
</tbody>
</table>

Neutron inverse beta decay threshold

E > 1.8MeV

"delayed" ~250 \(\mu\) s, ~70 cm

\(\gamma\) (2.2 MeV)

\(\gamma\) (511 keV)

K is not visible in liquid scintillator
Th/U ratio is "fixed" to 3.9 by analysis of chondrites
Geo-neutrinos: event selection

- $Q_{\text{prompt}} > 480 \text{ p.e.}$
- $Q_{\text{delayed}} [860,1300] \text{ p.e.}$
- $\Delta R \ (\text{prompt-delayed}) < 1 \text{ m}$
- $\Delta t \ (\text{prompt-delayed}) [20-1280] \mu s$
- $G_{\text{delayed}} < 0.015 \ (\text{must be "β-like"})$

Large Fiducial Volume:
- distance from the vessel > 25 cm

77 golden coincidences
907\pm44 ton x year

$S_{\text{react}} = 96.6 \pm 15.9 \text{ TNU}$

Expected = $87 \pm 4 \text{ TNU} \ (\text{after oscillations})$

$N_{\text{geo}} = 23.7 \pm 6.1 \text{ events}$

$S_{\text{geo}} = 43.5 \pm 11.1 \text{ TNU}$

1 TNU = 1 event / 10^{32} protons / year
Geo-neutrinos: implications

\[S_{\text{Expected}} = S_{\text{Local}} + S_{\text{Rest Of Crust}} + S_{\text{Mantle}} \]

- **43.5 ± 11.1** (data)
- **9.7 ± 1.3** (geological survey)
- **13.7 ± 2.5** (model)

20.9 ± 15.1

No mantle contribution excluded at 98% C.L.

Compatible with different BSE flavors and mantle elemental distributions.

Neutrino flux [TNU] vs. **Heat [TW]**
SOX concept

If reactor anomaly is interpreted in terms of oscillations into light sterile neutrinos it points to $L/E \sim 1\text{m/MeV}$

in Borexino with $\sim 1\text{MeV}$ source: resolution $\sim 15\text{cm} < L < \text{detector size} \sim 10\text{m}$

Uninvasive deployment: no work on the detector no risk of contamination does not terminate the solar run.
144Ce-Pr antineutrino generator up to 3MeV
Inverse Beta Decay detection tuned by geo-neutrino analysis
“long” half life: 285d
Activity: ~ 100kCi, $> 10^{13}$ anti-nu /s
Must be determined at 1% precision: two calorimeters
SOX $^{144}\text{Ce}-^{144}\text{Pr}$ run

- Source can be produced out of spent nuclear fuel in Mayak (Ru).
- Larger anti-nu cross section.
- Problem with 2.1 MeV gamma: needs tungsten shielding.

$\Delta m^2_{41} = 2 \text{eV}^2 \Rightarrow$ oscillations within detector

$P(\bar{\nu}_e \rightarrow \bar{\nu}_e) = 1 - \sin^2(2\theta_{ee}) \sin^2 \frac{\Delta m^2_{41} L}{4E}$

[Cribier et al., PRL 107, 201801 (2011)]

tentative schedule:
late 2016
run for 1.5 year
SOX: sensitivity

- shape-only
- rate-only
- rate + shape

$144\text{Ce} - 100\text{kCi} - 1.5\text{y} - 4.25\text{m}, 95\% \text{ CL}$

- rate only, $\sigma_h = 1\%$
- shape only, $\sigma_h = \text{inf.}$
- rate + shape, $\sigma_h = 1\%$

- anomalies, 95\% CL

- anomalies, 99\% CL

- Best Fit, PRD 88 073008 (2013)
Conclusions and outlook

✔ Borexino is taking data regularly since 2007:

✔ The *background levels are unprecedented* and still improving.

✔ Phase-I brought fundamental results over a broad range of solar neutrinos (*⁷Be, ⁸B, pep, CNO limits*) and geo-nu.

✔ We are now in Phase-II since 2012:

✔ **pp-neutrino flux** accomplished

 ✔ First direct observation of neutrinos from the primary proton-proton fusion reaction taking place in the Sun's core.

✔ upcoming: **CNO flux measurement** (or stronger limits): 2016

 ✔ first confirmation of fusion process that powers most stars.

 ✔ it could resolve the solar “metallicity problem”.

✔ Also pep, ⁷Be, ⁸B and geo-neutrino more stringent measurements.

✔ **SOX** project will test indications for **sterile neutrinos** with a ¹⁴⁴Ce-Pr source 2017
Geo-nu systematics

<table>
<thead>
<tr>
<th>Source</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^9\text{Li}-^8\text{He}$</td>
<td>$0.194^{+0.125}_{-0.089}$</td>
</tr>
<tr>
<td>Accidental coincidences</td>
<td>0.221 ± 0.004</td>
</tr>
<tr>
<td>Time correlated</td>
<td>$0.035^{+0.029}_{-0.028}$</td>
</tr>
<tr>
<td>(α,n) in scintillator</td>
<td>0.165 ± 0.010</td>
</tr>
<tr>
<td>(α,n) in buffer</td>
<td><0.51</td>
</tr>
<tr>
<td>Fast n’s (μ in WT)</td>
<td><0.01</td>
</tr>
<tr>
<td>Fast n’s (μ in rock)</td>
<td><0.43</td>
</tr>
<tr>
<td>Untagged muons</td>
<td>0.12 ± 0.01</td>
</tr>
<tr>
<td>Fission in PMTs</td>
<td>0.032 ± 0.003</td>
</tr>
<tr>
<td>$^{214}\text{Bi}-^{214}\text{Po}$</td>
<td>0.009 ± 0.013</td>
</tr>
<tr>
<td>Total</td>
<td>$0.78^{+0.13}_{-0.10}$</td>
</tr>
<tr>
<td></td>
<td><0.65 (combined)</td>
</tr>
</tbody>
</table>