Performance of the ALICE secondary vertex b-tagging algorithm

Gyuinara Eyyubova, Lukáš Kramárík on behalf of the ALICE collaboration
1) FNSPE, Czech Technical University in Prague
2) SINP MSU, Russia

Motivation

- Determine b-quark production via the measurements of beauty(b)-jets.
- Jets vs. heavy-flavor hadrons: access the kinematics of hard scattering in an unbiased way.
- Color and mass dependence of parton energy loss in the Quark-Gluon Plasma (QGP).

Secondary vertex (SV) tagging algorithm

Benefits from long lifetime ($\tau \sim 500 \mu$m) of beauty hadrons.

The Inner Tracking System (ITS) and Time Projection Chamber (TPC) are used for tracking and secondary vertex reconstruction. For all collision systems ALICE measures the track impact parameter d_0 with a resolution better than 70 μm for $p_\perp > 1$ GeV/c.

- Jet reconstruction: FastJet Anti-kt, $R = 0.4$ $p_\perp, \text{track} > 0.15$ GeV/c
- 3-prong SV are reconstructed using tracks in a jet $p_\perp, \text{track} > 1$ GeV/c
- Discriminating variables: significance of signed SV distance of flight $L_{/2}^0$ in a transverse plane and SV dispersion σ_0

3-prong vertex resolution in the (xy) plane.

Track impact parameter resolution

$\sigma = \sqrt{\sigma_{\text{fit}}^2 + \sigma_{\text{res}}^2}$

σ_{fit} is the impact parameter resolution of tracks from SV.

Prospects with LHC/ALICE upgrades

- Upgrade of ITS (2018):
 - Improvement of the track impact parameter resolutions by a factor 3 (6) in the transverse (longitudinal) direction.
 - Better light flavor rejection in b-tagging analysis.
- ALICE read-out and LHC upgrades (2018):
 - Higher integrated luminosities: -10 pb$^{-1}$ for pp collisions at $\sqrt{s} = 14$ TeV and -10 nb$^{-1}$ for Pb-Pb collisions at $\sqrt{s}_{NN} = 5.5$ TeV required by the ALICE upgrade program.

Analysis steps

- Jet-finding: jet reconstruction with charged tracks.
- Jet b-tagging: exploit long lifetime and large mass of beauty hadrons.
- Corrections: correction of jet transverse momentum p_T (or jet energy) for background and detector response (unfolding), corrections for b-tagging efficiency and charm/ light jet contamination.
- Studies presented in this poster are MC based.

Secondary vertex algorithm performance in p-Pb collisions

$T = \frac{dN_{\text{gen}}}{dx} \frac{d^3p_T}{dp_T}$

- Tagging efficiency: the ratio of properly tagged jets vs all jets.
- Detector response function $f(dN(x)/dx)$.
- The true jet spectrum is found via unfolding procedure.

$\delta p_T = \frac{dN_{\text{gen}}}{dx} \frac{d^3p_T}{dp_T}$

$\delta p_T = R_{\text{tagged}} - R_{\text{unb}}$

Summary and ongoing studies

- The tagging cuts for SV algorithms are optimized for keeping beauty efficiencies as large as possible and at the same time charm and light-jet contamination small.
- Corrections for background and background fluctuations as well as for detector response are implemented. It was found that the b-jet spectrum can be corrected with a detector response matrix for all inclusive jets.
- The order of corrections (tagging efficiency vs unfolding) gives compatible results.
- MC and data-driven estimation of tagging purity is under study.
- Study of track cuts and selection for SV reconstruction in order to obtain higher purity is ongoing.

Acknowledgment

This work was supported by the European social fund within the framework of realizing the project "Support of inter-sectoral mobility and quality enhancement of research teams at Czech Technical University in Prague", CZ.1.07/2.3.00/30.0034 and by Grant Agency of the Czech Technical University in Prague, grant No. 556/13/215/CHY4/11/14.