

Highlights from the COMPASS experiment JOHANNES GUTENBERG -- Hadron spectroscopy & excitations

UNIVERSITÄT MAINZ

Frank Nerling Institut für Kernphysik, Univ. Mainz on behalf of the COMPASS collaboration

4th International Conference on New Frontiers in Physics, ICNFP2015, Kolymbari, Crete, 23rd – 30th August 2015

F. Nerling

COMPASS Highlights – Hadron Spectroscopy & Excitations

26/08/2015

Introduction

- COMPASS physics adressed
- > The COMPASS experiment

Results on hadron excitations

- Measurement of pion polarisibility
- Measurement of chiral dynamics
- Measurements of radiative widths

Results on hadron spectroscopy

- > Observation of a new axial vector state
- Search for spin-exotic mesons
- > Search for the $Z_c(3900)$

Summary & outlook

COMPASS: The facility to study QCD Physics with Muon & Hadron beams

<u>The goal</u>:

- Study (non-)pertubative regime of QCD & Probe structure and dynamics of hadrons
- Complementary methods:

Large Q²: Nucleon structure:

- Helicitiy, transversity PDFs
- TMDs and GPDs (2015-17)

Low Q²: Spectroscopy

- Mass spectrum of hadrons
- Gluonic excitations (spin-exotics)

Very low Q²:

Chiral dynamics

- Pion, Kaon polarisibilities
- Chiral Anomaly F_{3π} (future)

F. Nerling

COMPASS: The facility to study QCD Physics with Muon & Hadron beams

<u>The goal</u>:

- Study (non-)pertubative regime of QCD & Probe structure and dynamics of hadrons
- Complementary methods:

Large Q²: Nucleon structure:

- Helicitiy, transversity PDFs
- TMDs and GPDs (2015-17)

Low Q²: Spectroscopy

- Mass spectrum of hadrons
- Gluonic excitations (spin-exotics)

Very low Q²:

Chiral dynamics

- Pion, Kaon polarisibilities
- Chiral Anomaly F_{3π} (future)

F. Nerling

The COMPASS Experiment at CERN

beam intensity: ~ 2 x 10⁸ μ ¹ / spill (4.8/19.6 s) or ~ 5 x 10⁷ π ⁻ / spill (9.6 s)

Physics with hadron beams very low Q²

Pion polarisability

Pion in strong electromagnetic field

- Measurement of fundamental pion (kaon) polarisability
- Prediction by χ PT: $2\alpha_{\pi} = \alpha_{\pi} \beta_{\pi} = (5.7 \pm 1.0) \times 10^{-4} \text{ fm}^3$ [J.Gasser et al., Nucl. Phys. B745 (2006) 84]

Measurement

- Deviation of cross-section from expectation for point-like particle
- Experimentally demanding, systematics precisely to be controlled
- Assumption: $\alpha_{\pi} = -\beta_{\pi}$
- COMPASS: use pion and muon beam to measure fake-polarisability of the muon to validate simulations

Pion polarisability

Pion in strong electromagnetic field

- Measurement of fundamental pion (kaon) polarisability
- Prediction by χ PT: $2\alpha_{\pi} = \alpha_{\pi} \beta_{\pi} = (5.7 \pm 1.0) \times 10^{-4} \text{ fm}^3$ [J.Gasser et al., Nucl. Phys. B745 (2006) 84]

Measurement

- Deviation of cross-section from expectation for point-like particle
- Experimentally demanding, systematics precisely to be controlled
- Assumption: $\alpha_{\pi} = -\beta_{\pi}$
- COMPASS: use pion and muon beam to measure fake-polarisability of the muon to validate simulations

Pion polarisibility

Published in PRL: $\alpha_{\pi} = (2.0 \pm 0.6_{\text{stat.}} \pm 0.7_{\text{sys.}}) \times 10^{-4} \text{ fm}^3$

- In tension with previous measurements
- In agreement with predictions from χPT

[hep-ex/1405.6377; PRL 114 (2015) 062002]

Pion polarisibility

Pion polarisibility

Measurement of Chiral dynamics in 3π final states (Coulomb region, very low momentum transfer t' < 0.001 GeV²/c²)

First measurement of cross-section in this range:

- Results in agreement with LO ChPT calculations
- More data available from 2009 run (Ni target)

[hep-ex/1111.5954, PRL 108 (2012) 192001]

JGU

Measurement of radiative widths

- > $a_2(1320) \rightarrow \pi \gamma$ magnetic quadrupole moment
- > $\pi_2(1670) \rightarrow \pi \gamma$ electric quadrupole moment
- Direct measurement of $\pi\gamma$ experimentally challenging
- Inverse process: scattering of a pion off a Coulomb potential
 - > quasi-real photons in the vicinity of heavy nuclei
- Cross-section for Primakoff produced X

•
$$\sigma_{\text{Primakoff, X}} \sim \Gamma_0(X \to \pi \gamma)$$

$$\Gamma_0(X \to \pi \gamma) = \frac{N_{X,\text{prim}}/\epsilon_X}{C_X \cdot L \cdot \text{CG} \cdot \text{BR} \cdot \epsilon_{\text{resol}}}$$

$$\pi^- Pb \rightarrow \pi^- \pi^- \pi^+ Pb$$

Identify Primakoff contribution:

$$\pi^-\gamma
ightarrow \pi^-\pi^-\pi^+$$

- Primakoff produced states have spin projection M=1
- Cross-section for diffractively produced states

$$\sigma \sim t'^M e^{-bt}$$

- at small t', states with M=1 predominantly Primakoff produced
- Partial-wave analysis to identify states with M=1
- Count number of final states to get cross-section

Measurement of radiative widths -- a₂(1320) M2 transition

Theoretical predictions

- Vector Meson Dominance Model 375 keV (Rosner, 1981)
- Relativistic Quark Model
 324 keV (Aznauryan & Ogamesyan, 1988)
- Covariant Oscillator Quark Model 235 keV (Ishida et al., 1989)

Experimental measurements

- SELEX (2001): (284 ± 25 ± 25) keV
- E272 (1982): (295 ± 60) keV
- May et al. (1977): (460 ± 110) keV

COMPASS: (358 ± 6 ± 42) keV

EPJ A Highlight 2014

[hep-ex/1403.2644, EPJ A 50 (2014) 79]

Measurement of radiative widths -- $\pi_2(1670)$ E2 transition

Theoretical predictions

 Covariant Oscillator Quark Model 335 keV and 521 keV (both in Maeda et al., 2013)

First measurement by COMPASS

COMPASS: (181 ± 11 ± 27) keV

EPJ A Highlight 2014

[hep-ex/1403.2644, EPJ A 50 (2014) 79]

F. Nerling

COMPASS Highlights – Hadron Spectroscopy & Excitations

26/08/2015

Physics with hadron beams low Q²

Constituent quark model

- Color neutral qq systems
- Quantum numbers *I^G J^{PC}*
- $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ $G = (-1)^{l+L+1}$
- *J^{PC} multiplets*: 0⁺⁺, 0⁻⁺, 1⁻⁻, 1⁺⁻, 1⁺⁺, 2⁺⁺, ...
- Forbidden: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...

QCD: meson states beyond

Glue-balls: gg, ggg
Hybrids: qqg
Tetraquarks: (qq)(qq)

Constituent quark model

- Color neutral qq systems
- Quantum numbers *I^G J^{PC}*
- $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ $G = (-1)^{l+L+1}$
- J^{PC} multiplets: 0⁺⁺, 0⁻⁺, 1⁻⁻, 1⁺⁻, 1⁺⁺, 2⁺⁺, ...
- Forbidden: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...

QCD: meson states beyond

Lattice calculations:

- Constituent quark states
- Exotic mesons
- Light hybrid, exotic J^{PC} =1⁻⁺

Constituent quark model

- Color neutral qq systems
- Quantum numbers *I^G J^{PC}*
- $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ $G = (-1)^{l+L+1}$
- J^{PC} multiplets: 0⁺⁺, 0⁻⁺, 1⁻⁻, 1⁺⁻, 1⁺⁺, 2⁺⁺, ...
- Forbidden: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...

QCD: meson states beyond

Glue-balls: gg, ggg
Hybrids: qq

qq
<u

Lattice calculations:

- Constituent quark states
- Exotic mesons
- Light hybrid, exotic J^{PC} =1⁻⁺

Experiment (1.3 - 2.2 GeV/c²): Hybrid candidates, exotic J^{PC} = 1⁻⁺

- $\pi_1(1400)$: VES, E852, CB -> $\eta\pi$
- $\pi_1(1600)$: E852, VES -> $\rho\pi, \eta, \pi, f_1\pi, b_1\pi$
- $\pi_1(2000)$: E852 $\rightarrow f_1(1285)\pi$, $b_1(1235)\pi$
- still controversial \rightarrow COMPASS

Constituent quark model

- Color neutral qq systems
- Quantum numbers I^G J^{PC}
- $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ $G = (-1)^{l+L+1}$
- *J^{PC} multiplets*: 0⁺⁺, 0⁻⁺, 1⁻⁻, 1⁺⁻, 1⁺⁺, 2⁺⁺, ...
- Forbidden: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...

Lattice calculations:

- Constituent quark states
- Exotic mesons
- Light hybrid, exotic J^{PC} =1⁻⁺

Experiment (1.3 - 2.2 GeV/c²):

Hybrid candidates, exotic J^{PC} =1⁻⁺

- $\pi_1(1400)$: VES, E852, CB -> $\eta\pi$
- $\pi_1(1600)$: E852, VES -> $\rho\pi$, η^{π} , $f_1\pi$, $b_1\pi$
- $\pi_1(2000)$: E852 -> $f_1(1285)\pi$, $b_1(1235)\pi$
- still controversial → COMPASS

QCD: meson states beyond

Diffractive production of e.g. 3π

Constituent quark model

- Color neutral qq systems
- Quantum numbers *I^G J^{PC}*
- $P = (-1)^{L+1}$ $C = (-1)^{L+S}$ $G = (-1)^{l+L+1}$
- J^{PC} multiplets: 0⁺⁺, 0⁻⁺, 1⁻⁻, 1⁺⁻, 1⁺⁺, 2⁺⁺, ...
- Forbidden: 0⁻⁻, 0⁺⁻, 1⁻⁺, 2⁺⁻, 3⁻⁺, ...

QCD: meson states beyond

Lattice calculations:

- Constituent quark states
- Exotic mesons
- Light hybrid, exotic J^{PC} =1⁻⁺

Experiment (1.3 - 2.2 GeV/c²):

Hybrid candidates, exotic J^{PC} = 1⁻⁺

- $\pi_1(1400)$: VES, E852, CB –> $\eta\pi$
- $\pi_1(1600)$: E852, VES $\rightarrow \rho \pi \eta \pi / f_1 \pi$, $b_1 \pi$
- $\pi_1(2000)$: E852 -> $f_1(1285)\pi$, $b_1(1235)\pi$
- still controversial → COMPASS

Diffractive production of e.g. 3π

Diffractive dissociation into 3π final states (2008 data, proton target)

PWA: ~ 50M events

PWA: ~ 3.5M events

COMPASS PWA Method

Step 2) χ^2 fit of mass dependence of spin density matrix:

- Applied to 1st step result
- Main partial waves chosen, parameterised by Breit-Wigner
- Non-resonant background for some waves

- Charged mode data scaled for each plot (integral) to compare shapes
- Good agreement between the two channels

F. Nerling

Comparison neutral vs. charged mode -- a couple of smaller waves

- Charged mode data scaled for each plot (integral) to compare shapes
- (Good) agreement between the two channels (for the 4⁺⁺ wave)

A new axial vector resonance found?

[subm. PRL; hep-ex/1501.05732]

- 2nd step analysis result overlaid (charged mode only presently)
- New axial vector state observed
- Coupling to KK, and not seen in $\rho\pi$ \rightarrow isospin partner of $f_1(1420)$?

A new axial vector resonance found?

26/08/2015

[subm. PRL; hep-ex/1501.05732]

- 2nd step analysis result overlaid (charged mode only presently)
- New axial vector state observed
- Coupling to \overline{KK} , and not seen in $\rho\pi \rightarrow isospin \ partner \ of f_1(1420)?$

Spin exotic 1⁻⁺ wave

- Charged mode data scaled for each plot (integral) to compare shapes
- Good agreement between the two channels, differences depending on t'
- Deck contribution amplitude to be included \rightarrow describe large background

Spin exotic 1⁻⁺ wave

Different channel for the search: $\pi^- + p \rightarrow \pi^- \eta^{\prime} / \pi^- \eta + p$

\rightarrow Both channels similar, different interference effects

 $m(\eta\pi^-)$ [GeV/ c^2]

[PLB 740 (2015) 303; hep-ex/1408.4286]

COMPASS Highlights - Hadron Spectroscopy & Excitations

26/08/2015

4.5

4

 $m(\eta'\pi^-)$ [GeV/ c^2]

5

Different channel for the search: $\pi^-+p \rightarrow \pi^-\eta^{\prime}/\pi^-\eta+p$

corrected for phase-space:

→ Even-L partial-waves: similar intensity distributions in η and η' → Odd-L partial-waves, in particular the P wave, are suppressed in $\eta\pi$ by factor 5-10

[PLB 740 (2015) 303; hep-ex/1408.4286]

Hadron spectroscopy with muon beams Large Q²

Search for charmonium-like (exotic) state Z_c(3900)

Highlight in 2013:

- Discovery of charged cc state
- $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ ($\sqrt{s} = 4.26 \text{ GeV}$), decay: $Z_c(3900) \rightarrow J/\psi \pi^{\pm}$

COMPASS:

- Photon may behave like a J/ψ (VMD model)
 - → $Z_c(3900)$ production via interaction of incoming photon with virtual charged pion (target nucleon)

- → sizable cross-section [14] Q.-Y. Lin et al., Phys. Rev. D 88, 114009 (2013),
- Exclusive production channel: $\mu^+ N \rightarrow \mu^+ Z_c^{\pm}(3900) N - \mu^+ J/\psi \pi^{\pm} N \rightarrow \mu^+ \mu^- \pi^{\pm} N$

[hep-ex/1407.6186, submitted to PLB]

Search for charmonium-like (exotic) state Z_c(3900)

Selection of exclusive $\mu^+ J/\psi \pi^\pm$ sample

- Vertex, exactly 3 outgoing muons, 1 pion
- Mass cut on $J/\psi(\rightarrow \mu^+\mu^-)$
- Energy balance
- Momentum cut for π^{\pm} (>2GeV/c)
 - ightarrow reduce background of pomeron exchange

Selection of exclusive $\mu^+ J/\psi$ sample

- $\mu^+ \ N \to \mu^+ J/\psi \ N_{\pm}$ (incoherent excl. prod.)
- Used for absolute normalisation (cross-section $\sigma_{\gamma N \rightarrow J/\psi N}$ from NA14)
- Same selection criteria
- → Ratio of acceptances for both samples equals about the acceptance for the additional pion (~0.5)

Search for charmonium-like (exotic) state Z_c(3900)

[hep-ex/1407.6186, submitted to PLB]

Search for charmonium-like (exotic) state Z_c(3900)

F. Nerling

COMPASS Highlights – Hadron Spectroscopy & Excitations

26/08/2015

Results from COMPASS hadron programme

- First precise measurement of pion polarisibility
- New path to radiative meson excitations
- High potential for light mesons spectroscopy & spin-exotic search
- Hadron spectroscopy with muon data: Charmonium region

Outlook

- Higher statistics data on tape
- ChPT with neutral pions
- Solve puzzle of disputed $\pi_1(1600)$

Results from COMPASS hadron programme

- First precise measurement of pion polarisibility
- New path to radiative meson excitations
- High potential for light mesons spectroscopy & spin-exotic search
- Hadron spectroscopy with muon data: Charmonium region

