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Introduction – Quark confinement

Confinement : colored state cannot be observed                         (quark, gluon, ・・・) 
only color-singlet states can be observed             (meson, baryon, ・・・)

Polyakov loop : order parameter for quark deconfinement phase transition

:Polyakov loop

in continuum theory

in lattice theory

:free energy of the system
with a single static quark

Finite temperature : 
(anti) periodic boundary condition for time direction

imaginary time



Polyakov loop fluctuations
P.M. Lo, B. Friman, O. Kaczmarek, K. Redlich and C. Sasaki, 
Phys. Rev. D88, 014506 (2013); Phys. Rev. D88, 074502 (2013)

・Polyakov loop:

・Z3 rotated Polyakov loop:

・longitudinal Polyakov loop:

・Transverse Polyakov loop:

・Polyakov loop susceptibilities:

・Ratios of Polyakov loop susceptibilities:

: temperature

: spatial and temporal lattice size

In particular, 
is a sensitive probe 

for deconfinement transition

※nf=0: quenched level
nf=2+1: (2+1)flavor full QCD

(near physical point)



Polyakov loop fluctuations
P.M. Lo, B. Friman, O. Kaczmarek, K. Redlich and C. Sasaki, 
Phys. Rev. D88, 014506 (2013); Phys. Rev. D88, 074502 (2013)

・Polyakov loop:

・Z3 rotated Polyakov loop:

・longitudinal Polyakov loop:

・Transverse Polyakov loop:

・Polyakov loop susceptibilities:

・Ratios of Polyakov loop susceptibilities:

: temperature

: spatial and temporal lattice size

In particular, 
is a sensitive probe 

for deconfinement transition

is a good probe for deconfinement transition 
even if considering light dynamical quarks.



Introduction – Chiral Symmetry Breaking

・Chiral condensate : order parameter for chiral phase transition

・Banks-Casher relation

・Chiral symmetry breaking : chiral symmetry is spontaneously broken

CSB

・ u, d quarks get dynamical mass(constituent mass)

・ Pions appear as NG bosons

for example

:Dirac eigenvalue density

:Dirac operator

:Dirac eigenvalue equation



QCD phase transition at finite temperature

: Polyakov loop and its susceptibility

: chiral condensate and its susceptibility

High THigh T Low TLow T

・ two flavor QCD 
with light quarks

・

deconfinement transition chiral transition

F. Karsch, Lect. Notes Phys. 583, 209 (2002)



F. Karsch, Lect. Notes Phys. 583, 209 (2002)

High THigh T Low TLow T

・ two flavor QCD 
with light quarks

・

These two phenomena are strongly correlated(?)

deconfinement transition chiral transition

QCD phase transition at finite temperature

We define critical temperature 
as the peak of susceptibility

: Polyakov loop and its susceptibility

: chiral condensate and its susceptibility
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Our strategy

Our strategy to study relation between confinement and chiral symmetry breaking :

anatomy of Polyakov loop in terms of Dirac mode

Polyakov loop  : an order parameter of deconfinement transition.

Dirac eigenmode: low-lying Dirac modes (with small eigenvalue                   )
are essential modes for chiral symmetry breaking.
(recall Banks-Casher relation:                                                     )



An analytical relation between Polyakov loop and Dirac mode 
on temporally odd-number lattice

・ Dirac eigenmode :

・ link variable operator :

・ Polyakov loop :

notation:

on temporally odd number lattice:

TMD, H. Suganuma, T. Iritani, Phys. Rev. D 90, 094505 (2014).
H. Suganuma, TMD, T. Iritani, arXiv: 1404.6494 [hep-lat].

Dirac operator :

・ This analytical formula is a general and mathematical identity.

・ valid in full QCD and at the quenched level.

with anti p.b.c. for time direction:

・ holds for each gauge-configuration {U}

・ holds for arbitrary fermionic kernel K[U]

~from next page: Derivation
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(time)
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In this study, we use 
・standard square lattice
・with ordinary periodic boundary condition for gluons, 
・with the odd temporal length 

( temporally odd-number lattice )

Note: in the continuum limit of a → 0, → ∞, 
any number of large gives the same result.
Then, it is no problem to use the odd-number lattice.

4

O

O

1,2,3
(spatial)

(time)

An analytical relation between Polyakov loop and Dirac mode 
on temporally odd-number lattice



In this study, we use 
・standard square lattice
・with ordinary periodic boundary condition for gluons, 
・with the odd temporal length  

( temporally odd-number lattice )

For the simple notation, 
we take the lattice unit a=1 hereafter. 

4

O

O

1,2,3
(spatial)

(time)

An analytical relation between Polyakov loop and Dirac mode 
on temporally odd-number lattice
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Polyakov loop 

Closed Loops 

In general, only gauge-invariant quantities 
such as Closed Loops and the Polyakov loop 
survive in QCD. (Elitzur’s Theorem)

All the non-closed lines are gauge-variant
and their expectation values are zero.

Nonclosed Lines 
e.g.

(          =0 )
gauge-variant

4

An analytical relation between Polyakov loop and Dirac mode 
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O

Polyakov loop 

In general, only gauge-invariant quantities 
such as Closed Loops and the Polyakov loop 
survive in QCD. (Elitzur’s Theorem)

All the non-closed lines are gauge-variant
and their expectation values are zero.

Note: any closed loop needs even-number link-variables
on the square lattice.

e.g.

(          =0 )
gauge-variant

Key point

4

4

An analytical relation between Polyakov loop and Dirac mode 
on temporally odd-number lattice

Closed Loops 

Nonclosed Lines 



We consider the functional trace     on the temporally odd-number lattice:

site & color & spinor
Dirac operator :

is expressed as a sum of products of        link-variable operators 
because the Dirac operator     includes one link-variable operator in each direction     . 

includes many trajectories on the square lattice.

case

length of trajectories: 
odd !!

4

definition:

An analytical relation between Polyakov loop and Dirac mode 
on temporally odd-number lattice



We consider the functional trace     on the temporally odd-number lattice:

site & color & spinor
Dirac operator :

is expressed as a sum of products of        link-variable operators 
because the Dirac operator     includes one link-variable operator in each direction     . 

includes many trajectories on the square lattice.

case

length of trajectories: 
odd !!

4

definition:

Note: any closed loop needs even-number 
link-variables on the square lattice.

Key point

An analytical relation between Polyakov loop and Dirac mode 
on temporally odd-number lattice



Dirac operator :

Almost all trajectories are gauge-variant & give no contribution.

In this functional trace                                  ,
it is impossible to form a closed loop on the square lattice, 
because the length of the trajectories,      , is odd.  

4

case

gauge variant

(no contribution)

Only the exception is the Polyakov loop.

4

case

gauge invariant !!

is proportional to the Polyakov loop.

: Polyakov loop

An analytical relation between Polyakov loop and Dirac mode 
on temporally odd-number lattice



On the other hand, take the Dirac modes as the basis for functional trace

・・・①

・・・②

from ①、②

Dirac eigenmode

Note 1: this relation holds gauge-independently. (No gauge-fixing)   

On the one hand,

Note 2: this relation does not depend on lattice fermion for sea quarks.  

An analytical relation between Polyakov loop and Dirac mode 
on temporally odd-number lattice



An analytical relation between Polyakov loop and Dirac mode 
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・ Dirac eigenmode :

・ link variable operator :

・ Polyakov loop :

notation:

on temporally odd number lattice:

TMD, H. Suganuma, T. Iritani, Phys. Rev. D 90, 094505 (2014).
H. Suganuma, TMD, T. Iritani, arXiv: 1404.6494 [hep-lat].

Dirac operator :

properties :

・ This formula is valid in full QCD and at the quenched level.

with anti p.b.c. for time direction:

・ This formula exactly holds for each gauge-configuration {U} 
and for arbitrary fermionic kernel K[U]



An analytical relation between Polyakov loop and Dirac mode 
on temporally odd-number lattice

・ Dirac eigenmode :

・ link variable operator :

・ Polyakov loop :

notation:

on temporally odd number lattice:

TMD, H. Suganuma, T. Iritani, Phys. Rev. D 90, 094505 (2014).
H. Suganuma, TMD, T. Iritani, arXiv: 1404.6494 [hep-lat].

Dirac operator :

properties :

・ This formula is valid in full QCD and at the quenched level.

with anti p.b.c. for time direction:

・ This formula exactly holds for each gauge-configuration {U} 
and for arbitrary fermionic kernel K[U]

We derived the similar relation between Wilson loop and Dirac mode. 
Therefore, we can also show that low-lying Dirac modes have little contribution to 
the string tension σ, namely the confining force. 



Analytical relation between Polyakov loop and Dirac modes 
with twisted boundary condition

C. Gattringer, Phys. Rev. Lett. 97 (2006) 032003.

: Eigenvalue of

: Eigenvalue of 

twisted boundary condition:

The twisted boundary condition is not the periodic boundary condition. 

However, 
the temporal periodic boundary condition is physically important 
for the imaginary-time formalism at finite temperature. 

(The b.c. for link-variables is p.b.c., but the b.c. for Dirac operator is twisted b.c.)

: Wilson Dirac operator



is a good probe for deconfinement transition 
even if considering dynamical quarks.

・Polyakov loop:

・Z3 rotated Polyakov loop:

・longitudinal Polyakov loop:

・Transverse Polyakov loop:

・Polyakov loop susceptibilities:

・Ratios of Polyakov loop susceptibilities:

Definition of the Polyakov loop fluctuations

Dirac spectrum representation of the Polyakov loop fluctuations

TMD, K. Redlich, C. Sasaki and H. Suganuma, arXiv: 1505.05752 [hep-lat]

P.M. Lo, B. Friman, O. Kaczmarek, K. Redlich and C. Sasaki, 
Phys. Rev. D88, 014506 (2013); Phys. Rev. D88, 074502 (2013)



Dirac spectrum representation of the Polyakov loop fluctuations

・Polyakov loop:

・Z3 rotated Polyakov loop:

・longitudinal Polyakov loop:

・Transverse Polyakov loop:

・Polyakov loop susceptibilities:

・Ratios of Polyakov loop susceptibilities:

TMD, K. Redlich, C. Sasaki and H. Suganuma, arXiv: 1505.05752 [hep-lat]

Definition of the Polyakov loop fluctuations Dirac spectrum representation of the Polyakov loop

Dirac eigenmode :

link variable operator :

Polyakov loop :



Dirac spectrum representation of the Polyakov loop fluctuations

・Polyakov loop:

・Z3 rotated Polyakov loop:

・longitudinal Polyakov loop:

・Transverse Polyakov loop:

・Polyakov loop susceptibilities:

・Ratios of Polyakov loop susceptibilities:

TMD, K. Redlich, C. Sasaki and H. Suganuma, arXiv: 1505.05752 [hep-lat]

Definition of the Polyakov loop fluctuations

Dirac eigenmode :

link variable operator :

Polyakov loop :

Dirac spectrum representation of the Polyakov loop

combine

Dirac spectrum representation 
of the Polyakov loop fluctuations

For example,

and...



Dirac spectrum representation of the Polyakov loop fluctuations

TMD, K. Redlich, C. Sasaki and H. Suganuma, arXiv: 1505.05752 [hep-lat]

In particular, the ratio         can be represented using Dirac modes:

Note 1: The ratio         is a good “order parameter” for deconfinement transition.
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Dirac spectrum representation of the Polyakov loop fluctuations

TMD, K. Redlich, C. Sasaki and H. Suganuma, arXiv: 1505.05752 [hep-lat]

Note 1: The ratio         is a good “order parameter” for deconfinement transition.

Note 2: Since the damping factor is very small with small                 ,
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Dirac spectrum representation of the Polyakov loop fluctuations

TMD, K. Redlich, C. Sasaki and H. Suganuma, arXiv: 1505.05752 [hep-lat]

Note 1: The ratio         is a good “order parameter” for deconfinement transition.

Note 2: Since the damping factor is very small with small                 ,
low-lying Dirac modes (with small                  ) are not important for ,
which are important modes for chiral symmetry breaking.

Thus, the essential modes for chiral symmetry breaking in QCD 
are not important to quantify the Polyakov loop fluctuation ratios, 
which are sensitive observables to confinement properties in QCD.

This result suggests that 
there is no direct, one-to-one correspondence 
between confinement and chiral symmetry breaking in QCD.

In particular, the ratio         can be represented using Dirac modes:
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Introduction of the Infrared cutoff for Dirac modes

TMD, K. Redlich, C. Sasaki and H. Suganuma, arXiv: 1505.05752 [hep-lat]

where, for example, 

Define     -dependent (IR-cut) susceptibilities:

Define     -dependent (IR-cut) ratio of susceptibilities:

Define     -dependent (IR-cut) chiral condensate:

Define the ratios, which indicate the influence of removing the low-lying Dirac modes:



Numerical analysis

・ is strongly reduced by removing the low-lying Dirac modes.
・ is almost unchanged.

It is also numerically confirmed that 
low-lying Dirac modes are important for chiral symmetry breaking
and not important for quark confinement.

lattice setup:

・quenched SU(3) lattice QCD

・gauge coupling:

・lattice size:

⇔

・periodic boundary condition 
for link-variables and Dirac operator

・standard plaquette action

lattice spacing :



Summary
We have derived the analytical relation between 
Polyakov loop fluctuations and Dirac eigenmodes on temporally odd-number lattice:

Dirac eigenmode :

Link variable operator :

TMD, K. Redlich, C. Sasaki and H. Suganuma, 
arXiv: 1505.05752 [hep-lat]

1.

e.g.)

2. We have semi-analytically and numerically confirmed that 
low-lying Dirac modes are not important to quantify the Polyakov loop fluctuation ratios, 
which are sensitive observables to confinement properties in QCD.

3. Our results suggest that there is 
no direct one-to-one correspondence between 
confinement and chiral symmetry breaking in QCD.
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Polyakov loop fluctuations
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・Z3 rotated Polyakov loop:

・longitudinal Polyakov loop:

・Transverse Polyakov loop:

・Polyakov loop susceptibilities:
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: temperature

: spatial and temporal lattice size
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Polyakov loop fluctuations
P.M. Lo, B. Friman, O. Kaczmarek, K. Redlich and C. Sasaki, 
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・Polyakov loop:

・Z3 rotated Polyakov loop:

・longitudinal Polyakov loop:

・Transverse Polyakov loop:

・Polyakov loop susceptibilities:

・Ratios of Polyakov loop susceptibilities:

: temperature

: spatial and temporal lattice size

0.0

transverse

longitudinal

absolute value

C. Gattringer et al., Phys.Lett. B697 (2011) 85



Why Polyakov loop fluctuations?
P.M. Lo, B. Friman, O. Kaczmarek, K. Redlich and C. Sasaki, 
Phys. Rev. D88, 014506 (2013); Phys. Rev. D88, 074502 (2013)

Ans. 1:  Avoiding ambiguities of the Polyakov loop renormalization

: renormalization function for the Polyakov loop, which is still unknown

Avoid the ambiguity of renormalization function 
by considering the ratios of Polyakov loop susceptibilities:



lattice size : 

v.s.             ,

(confined phase)

Dirac eigenvalue:



lattice size : 

v.s.             ,

(confined phase)

is due to the symmetric distribution of positive/negative value of 

Low-lying Dirac modes have little contribution to Polyakov loop.

confined phase

Dirac eigenvalue:



v.s.             ,

(deconfined phase)

We mainly investigate the real Polyakov-loop vacuum, where the Polyakov loop is real, 
so only real part is different from it in confined phase.

Dirac eigenvalue:

lattice size : 



v.s.             ,

In low-lying Dirac modes region, has a large value,
but contribution of low-lying (IR) Dirac modes to Polyakov loop is very small
because of dumping factor    

(deconfined phase)

Dirac eigenvalue:

lattice size : 


