

Search for sterile neutrino mixing in the $v_{\mu} \rightarrow v_{\tau}$ appearance channel with the OPERA detector

Nicoletta Mauri (INFN-Bologna) on behalf of the OPERA Collaboration

4th International Conference on New Frontiers in Physics, ICNFP 2015 Kolymbari, Crete, August 26th, 2015

Outline

Physics motivations

> sterile neutrinos

The OPERA experiment

detector and physics case

Sterile neutrino mixing search

- > 3+1 model
- $\succ v_{\mu} \rightarrow v_{\tau}$ appearance channel

Conclusions

Introduction

- In the last decades several experiments provided evidence for neutrino oscillations: conversion in-flight of lepton flavor
 - 3 neutrino paradigm well established
 - mixing matrix parameters precisely measured

BUT

• A certain number of *anomalies* shows tensions with the 3 flavor framework, both in appearance and in disappearance modes

Sterile neutrinos

- Anomalies point toward a new parameter region $\Delta m^2 \sim eV^2$
 - "only" 3 active neutrinos ($N_{active} = 3$, bound by the the Z invisible decay width measured at LEP)

→ Sterile neutrino hypothesis [Pontecorvo, JETP 26 (1968) 984]

- The new model should include the standard 3ν framework

 \rightarrow Perturbation of 3v mixing

• OPERA can test the sterile neutrino hypothesis in the v_{τ} appearance channel looking for deviations from the standard 3v model

(in addition to the ν_{e} appearance channel) [JHEP 4 (2013) 1307]

The OPERA experiment

Main physics goal: prove (standard) $v_{\mu} \rightarrow v_{\tau}$ oscillations in appearance mode

Full coverage of the parameter space for the atmospheric neutrino sector

- Long baseline neutrino oscillation experiment located in the CNGS (CERN Neutrinos to Gran Sasso) v_{μ} beam
- Direct search for $v_{\mu} \rightarrow v_{\tau}$ oscillations detecting the τ lepton produced in v_{τ} CC interactions (appearance mode)

Appearance detection

Direct observation of $\nu_{\mu} \rightarrow \nu_{\tau}$ oscillation

 $> N_{\tau} = N_{A} M_{D} \phi_{\nu_{\mu}}(E) P_{\nu_{\mu} \rightarrow \nu_{\tau}}(E, \Delta m^{2}) \sigma_{\nu_{\tau}}^{CC}(E) \varepsilon(E) dE \rightarrow \text{Large mass } \sim O(\text{kton})$ $> \text{ signal selection and background rejection } \rightarrow \text{High granularity } \sim I \mu \text{m resolution}$

Emulsion Cloud Chamber

N. Mauri, ICNFP 2015

Neutrino interaction detector (ECC)

 Target basic unit: brick of 57 nuclear emulsions interleaved by lead plates

+ 2 interface emulsions (CS)

 \rightarrow high resolution and large mass in a modular way

• unambiguous measurement of the kink

OPERA general structure

Brick: ECC target basic unit (57 nuclear emulsion films + 56 lead plates)

Target section: 27 brick walls (75000 bricks) 31 Target Tracker walls (TT)

Neutrino interaction trigger Brick selection Calorimetry

Magnetic spectrometer: 22 RPC planes 6 drift tube layers (PT stations)

 μ ID, charge, momentum

Total target mass = 1.25 ktons

OPERA: an hybrid detector

 $\nu_{\mu} \rightarrow \nu_{\tau}$: Results

	Exposure	17.97 × 10 ¹⁹ p.o.t. 19505		
	Interactions in target volume			
	Located interactions	6932	2	
	5 ν _τ ca	andidates	$\Delta m^2 = 2.44 \times 10^{-3}$	Compatible with expectations from eV ²] standard 3v model
nnel –	Expected backgrour	Expected signal	Observed	

N. Mauri, ICNFP 2015

0

20

10

30

40 p.....(GeV/c)

3+1 Model

Oscillation probability in presence of a sterile neutrino becomes:

Sterile effective mixing

Oscillation probability in presence of a sterile neutrino becomes:

Mass hierarchy

Oscillation probability in presence of a sterile neutrino becomes:

CP-violation

Oscillation probability in presence of a sterile neutrino becomes:

26 August 2015

New results

5 v_{τ} candidates

- ✓ Use **GLoBES** to evaluate number of expected events
- $\checkmark \Delta m_{21}^2$ set costant to $7.54 \times 10^{-5} \text{ eV}^2$
- $\checkmark \Delta m^{2}_{31}$ assumed Gaussian
 - NH: (2.47 ± 0.06) x 10⁻³ eV²
 - IH: (-2.34 ± 0.06) x 10⁻³ eV²
- Likelihood
 - L = Poisson(n| μ) x Gaus(Δm_{31}^2)
- \checkmark Test statistic:
 - profile likelihood ratio
- Not interesting parameters profiled out

26 August 2015

New results

5 v_{τ} candidates

Conclusions

> OPERA was designed to observe $v_{\mu} \rightarrow v_{\tau}$ oscillations in appearance mode in the atmospheric sector

• Currently 5 v_{τ} event candidates were identified with a background expectation of 0.25 events \rightarrow 5 σ discovery of tau neutrino appearance!

The sterile mixing at eV mass scale can be studied also at Long-Baseline ν_μ beams
 OPERA sterile search in appearance mode provides a complementary measurement w.r.t. disappearance experiments

- 3+1 sterile neutrino working hypothesis
 → derived exclusion regions for oscillation parameters
 - 90% C.L. exclusion region on Δm_{41}^2 lowered down to 10^{-2} eV^2 for $\sin^2 2\theta_{\mu\tau} > 0.5$
 - At large Δm_{41}^2 : $\sin^2 2\theta_{\mu\tau} < 0.119$ at 90% C.L.

Thank you for your attention!

Image taken using **OPERA nuclear emulsion film** with a pinhole hand made camera courtesy by Donato Di Ferdinando

Back Up

Published Results

4 v_{τ} candidates

Results based on 4 taus' candidates published in JHEP 06 (2015) 069

 $For|\Delta m_{41}^2| > 1 eV^2$

Results given in terms of an effective mixing parameter

$$sin^2 2\theta_{\mu\tau} = 4 \, |\, U_{\mu4} \,|^{\, 2} \, |\, U_{\tau4} \,|^{\, 2}$$

which is the leading mixing term at short baseline experiments