Search for Charged Lepton Flavour Violation with the MEG and MEG II experiments

Marco Venturini
Scuola Normale Superiore, INFN Sezione di Pisa
on behalf of the MEG collaboration

ICNFP 2015, 26 August – Kolymbari
Charged Lepton Flavour Violation

\[\mathcal{B}(\mu \rightarrow e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^* U_{ei} \frac{\Delta m_{i1}^2}{M_W^2} \right|^2 \sim 10^{-54} \]

Many new physics scenarios predict an enhanced probability, through mixing between new particles of the theory.

The existence of new physics at high energy scale may result in

\[\mathcal{B} \sim 10^{-14} \div 10^{-12} \]

free from SM background!
CLFV channels

Lepton decays | μ-e conversion | Meson (or Higgs) decays | (Anomalous Magnetic Moment)

γ | N | q | e | μ | μ

Look out for discrepancies on lepton couplings at Hadron Colliders!

\[
R^\mu_e^K = \frac{\mathcal{B}(B \to K\mu\mu)}{\mathcal{B}(B \to K\mu\mu)} \cdot \mathcal{B}(h \to \mu\tau)
\]

Muon channels

Due to the extremely-low accessible branching ratios, CLFV muon channels can strongly constrain new physics models and scales.

Model independent Lagrangian:

\[
\frac{m_\mu}{(\kappa + 1)\Lambda^2} + \frac{\kappa}{(\kappa + 1)\Lambda^2}
\]

Dipole term (e.g. SUSY) | Contact term (e.g. Z', LQ)

| \(\mu \rightarrow e\gamma\) | \(\mu \rightarrow eee\) |
| \(\mu - e\) conversion |

Sensitive to high-mass New Physics!
The MEG experiment

Search for the Lepton Flavour Violating process $\mu \rightarrow e\gamma$
The $\mu \rightarrow e\gamma$ decay

Clear kinematic signature (at rest):

1) $E_\gamma = m_\mu / 2$
2) $E_e = m_\mu / 2$
3) $\Theta_{e\gamma} = 180^\circ$
4) $t_{e\gamma} = 0$

with two sources of background:

Radiative Muon Decay

1) $E_\gamma \lesssim m_\mu / 2$
2) $E_e \lesssim m_\mu / 2$
3) $\Theta_{e\gamma} \lesssim 180^\circ$
4) $t_{e\gamma} = 0$

$\propto R_\mu$

Accidental Background

$\propto R^2_\mu$

$\mu^+ \rightarrow e^+\bar{\nu}_\mu\nu_e\gamma$
$e^+e^- \rightarrow \gamma\gamma$
$e^+ N \rightarrow e^+ N\gamma$
The MEG apparatus

Tailored to take advantage of the well-defined kinematics

- **Positive muons stopped** in a thin polyethylene target
- Positrons are detected by a **spectrometer** immersed in a non-uniform magnetic field
- Photons are detected by a **liquid Xenon** calorimeter

The MEG apparatus

- 16 drift chamber modules
- 15 plastic bars + scintillating fibres for timing

from PSI πE5 beam line

$3 \times 10^7 \mu^+/s$

$p = 29$ MeV/c

- fast: $\tau's = 4/22/45$ ns
- high Light Yield $LY \sim 0.8 LY_{NaI}$
- Short Radiation Length $X_0 = 2.77$ cm
Analysis strategy

- Events described by 5 variables:
 \[\bar{x} = (E_\gamma, E_e, t_{e\gamma}, \vartheta_{e\gamma}, \varphi_{e\gamma}) \]

- **Probability Density Functions (PDFs)** for signal and backgrounds are determined starting from data outside the signal box.

- Two-fold use of **sidebands**
 - Evaluation of PDFs.
 - Estimate of the background events entering the signal box.
Probability density functions

Positron Energy
- Fit from Michel endpoint
- Left/right sidebands

Photon Energy
- Fit from 55 MeV calibration

Relative Time
- From lower sideband

\[N_{\text{RMD}} = 16430 \pm 374 \]
\[\sigma_{t_{\gamma}} = 130 \pm 4 \text{ ps} \]
Likelihood fit

\[\mathcal{L}(N_{\text{sig}}, N_{\text{RMD}}, N_{\text{ACC}}) = \frac{e^{-N}}{N_{\text{obs}}!} \prod_{i=1}^{N_{\text{obs}}} \left[N_{\text{sig}} S(\vec{x}_i) + N_{\text{RMD}} R(\vec{x}_i) + N_{\text{ACC}} B(\vec{x}_i) \right] \exp \left[-\frac{(N_{\text{RMD}} - \langle N_{\text{RMD}} \rangle)^2}{2\sigma_{\text{RMD}}^2} \right] \exp \left[-\frac{(N_{\text{ACC}} - \langle N_{\text{ACC}} \rangle)^2}{2\sigma_{\text{ACC}}^2} \right] \]

from this fit we get

\[N_{\text{sig}}, N_{\text{RMD}}, N_{\text{ACC}} \]
Branching ratio

1) **Normalization**: obtained from Michel and radiative decays.

2) **Confidence interval** calculated with Feldman & Cousins approach with profile likelihood ratio ordering.

with half of the collected statistics:

\[\mathcal{B}(\mu \to e\gamma) < 5.7 \times 10^{-13} \]

@ 90% C.L.

Final result from the MEG data set will be released in a few weeks, with an expected sensitivity of ~ 4x10^{-13} thanks to the **double statistics** and improvements on analysis.
MEG upgrade

1. Higher Muon Rate ⇔ better detector resolutions
2. Less energetic muons ⇒ thinner target
3. New tracker with higher resolution
4. Improved matching between drift chamber and timing counter
6. Larger XEC acceptance
7. Better XEC scintillation light collection

A new drift chamber

A new single-volume cylindrical drift chamber is under construction.

- 10 layers with wires at stereo angles ±7°÷8°.
- Drift cells with approximately squared shape 7x7 mm² (high granularity).
- Low mass gas mixture with helium and isobutane 85:15 (high transparency).
- Semi-automatic wiring robot with laser soldering tool developed for wiring >10000 wires.

Radiation hardness measured in laboratory tests

Spatial Resolution ~110 µm
The new timing counters

Good single pixel resolution is improved with **multiple hits** down to **35 ps**.

Each timing counter consists of 256 scintillator plates, read-out by 6 SiPMs.

- **Transparency**: thin scintillators for smaller multiple scattering contribution.
- **Segmentation**: less pile-up at even higher beam intensity.
The upgraded LXe detector

Replacement of the photosensors in the front face and rearrangement of those in the lateral faces.

2" PMTs

12x12mm2 MPPCs
Trigger and DAQ

Custom system based on:
• 1-GHz waveform digitizers (**DRS chips**) for pile up rejection.
• **FPGAs** for online processing.
Resolution improvements

All the resolutions on the kinematic variables are improved by about a factor 2!

<table>
<thead>
<tr>
<th>Variable</th>
<th>MEG</th>
<th>MEG2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔE_{γ} (%)</td>
<td>1.7</td>
<td>1.0</td>
</tr>
<tr>
<td>γ position (mm)</td>
<td>5(u, v), 6(w)</td>
<td>2.6(u), 2.2(v), 5(w)</td>
</tr>
<tr>
<td>ΔP_e (keV)</td>
<td>306</td>
<td>130</td>
</tr>
<tr>
<td>e^+ angle (mrad)</td>
<td>7(φ_e), 9.4(ϑ_e)</td>
<td>5.3(φ_e), 3.7(ϑ_e)</td>
</tr>
<tr>
<td>$\Delta t_{e\gamma}$ (ps)</td>
<td>122</td>
<td>84</td>
</tr>
<tr>
<td>e^+ efficiency (%)</td>
<td>40</td>
<td>88</td>
</tr>
<tr>
<td>γ efficiency (%)</td>
<td>63</td>
<td>69</td>
</tr>
<tr>
<td>trigger efficient (%)</td>
<td>~ 99</td>
<td>~ 99</td>
</tr>
</tbody>
</table>
MEG2 expected sensitivity

- 3 DAQ years estimated
- \(~10x\) in stopped muons
- Schedule ongoing

\[k \text{ factor} = \frac{\text{SES}_1}{50} \times 10^{12} \]

5 \times 10^{-14}

Upgraded MEG in 3 years
Conclusions

- **Charged Lepton Flavour Violation** experiments represent a powerful tool to investigate new physics scenarios with no SM background.

- Combined measurements on CLFV processes can significantly **constrain** new physics at **high energy scales**.

- The MEG experiment has recently set the most stringent limit on CLFV physics scenarios.

- Next year **MEG2** will start data taking with the goal of improving MEG results by an **order of magnitude**.
In the next decade...

MEG Final Result

MEG2 DAQ

Mu3e DAQ

COMET-II DAQ

J-PARC g-2 DAQ

Mu2e DAQ

FNAL g-2 DAQ

COMET-I DAQ

DeeMee DAQ

Mu2e DAQ

COMET-II DAQ

J-PARC g-2 DAQ

Mu3e DAQ

COMET-I DAQ

DeeMee DAQ
Spare Slides
"Table-top" experiments

- Dedicated experiments
- A long road in beam and detector technology improvements

Experiments looking for $\mu \rightarrow e\gamma$

Hincks-Pontecorvo 1948
Crystal-Box 1988
MEGA 1999

Probes to New Physics

Between the different processes **tight connections** are envisaged in several models

Antusch et al., JHEP (2006), 0611:090
Hisano et al., JHEP (2009), 0912:030
Detector calibrations

Proton Accelerator

Li(p,γ)Be
LiF target at COBRA center
17.6MeV γ
~daily calib.
also for initial setup

\[\pi^0 \rightarrow \gamma \gamma \]
\[\pi^+ + p \rightarrow \pi^0 + n \]
\[\pi^0 \rightarrow \gamma \gamma \text{ (55MeV, 83MeV)} \]
\[\pi^+ + p \rightarrow \gamma + n \text{ (129MeV)} \]
LHe target

Alpha on wires

PMT QE & Att. L
Cold GxXe
LXe

Mott e\(^+\) scattering

Detector Calibration

Cosmic ray alignment

Nickel γ Generator

\(\gamma \rightarrow \mu^0 \rightarrow e^- + \nu_e \)

Lower beam intensity < 10\(^7\)
Is necessary to reduce pile-ups
A few days ~ 1 week to get enough statistics

9 MeV Nickel _line

NaI

Illuminate Xe from the back
Source (Cf) transferred by comp air \rightarrow on/off
A new drift chamber

Radiation hardness

Laboratory tests showed that the expected accumulated charge of $0.5 \, \text{C/cm}$ correspond to a gain loss of $\sim 50\%$ in the whole data taking period in the hottest portion.

Performance

In low-mass gas mixtures spatial resolution is limited by poor ionisation statistics.

- Tests on small prototypes showed a single-hit resolution of $\sim 110 \, \mu\text{m}$.
- The high-bandwidth (1 GHz) electronic chain allows for the improvement of such results by means of the cluster timing technique.