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“References"

Black holes + String Theory + Entropy
is an old and intensely studied subject, e.g., book
L. Susskind “An Introduction To Black Holes, Information
And The String Theory Revolution: The Holographic
Universe "
This talk is mostly a review, original statements are based
on 7 papers (and references therein) by
Thomas Mertens (Gent Uni → Princeton Uni),
Henri Verschelde (Gent Uni), VIZ
1305.7443, 1307.3491; 1402.2808;1408.6999; 1408.7012;
1410.8009, 1505.07798 published in JHEP
Thesis by Th. Mertens “Hagedorn String Thermodynamics
in Curved Spacetimes and near Black Hole Horizons"
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Outline of the talk

Limiting temperature,
in hadronic world and Black Holes (BH)

Stringy BH horizon

Holography as a bridge between gravity and
strong-interactions phenomenology

Conclusions



Hagedorn temperature and physiccs of black holes

Hagedorn temperature

Ralf Hagedorn in 1965 Nuovo Cim. Suppl. 3 147 suggested
density of states grow exponentially with energy
at large energy:

ω(E) ∼ exp
(
βHE

)
,where βH ∼ m−1

π

Then partition function

z =

∫ ∞
0

dEω(E)e−βE

exists only as far as β > βH .
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Hagedorn temperature, cnt’d

In another language, there is a “limiting temperature"

1
T

=
∂S
∂E

and
T < TH , TH ≡

1
βH

= const

Physics: if we pump energy into the system, new
higher-mass states are produced rather than the energy of
already existing states is increased
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Hagedorn temparature and strings
This growth is reproduced by strings/Regge trajectories

Estring = σ · L, σ ≡ (2πα
′
)−1

where σ is tension, L is the length. For rotating string

M2 =
1
α′ J

where J is the angular total momentum.
The density of states is indeed exponential at high energy:

ω(E) ∼ exp(βHE)

E1+D/2 ,

where D is the number of (non-compact) spatial directions,
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Limiting temperture vs phase transition

In reality, instead of the limiting temperature, there is
deconfining phase transition, from composite hadrons to
fundamental quarks and gluons

In other words, we learn that at higher temperatures, or
short distances it is field theory which is fundamental, not
hadronic strings

As we see next, Quantum Field Theory (Q.F.T.)
becomes problematic at gravitational scale,
as is revealed by consideration of Black Holes
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Black Holes

Shwarzschild geometry

ds2 = −
(

1− 2GNM
r

)
dt2 +

(
1− 2GNM

r

)−1
+ dx2

⊥

G00 component vanishes at the horizon, rH = 2GNM
Thermodynamic entropy is proportinal to the Area of BH:

SBH =
Area
4GN

and there is Hawking radiation with temperature

βHawking = 8πGNM
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Near-Horizon geometry
Introduce distance to the horizon
ρ =

√
8GNM(r − 2GNM) Then for ρ� 4GM

ds2
Rindler = − ρ2

(4GNM)2 dt2 + dρ2 + dx2
⊥

Many results apply just in this limit.
For Euclidean time τ

ds2
Euclidean =

ρ2

(4GNM)2 dτ 2 + dρ2 + dx2
⊥

which is flat space in polar coordinates, for τ periodic

τ ∼ τ + βRindler ,

where
βRindler = 8πGM ≡ βHawking (1)
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Blue-Shift factor

BH provides a lab to study temperatures arbitrarily high
Near horizon the Blue-shift factor

χ ≡ 4GNM
ρ

,

where ρ is the distance to the horizon, M is the BH mass.
Hence

βlocal = βRindlerχ
−1, βlocal → 0, if ρ → 0. (2)

Overall Euclidean thermal manifold is cigar-shaped
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BH and limiting temperature

In Q.F.T. the entropy density s ∼ T 3

and the total entropy

S ∼
∫

dρT 3 =
Area
ε2 , (3)

where ε is small-distance or UV cut off.
Not to exceed the BH entropy, SBH = (area)/4GN

need limiting temperature (brick wall of ’t Hooft)
Need modification of Q.F.T. at short distances
Strings are welcome back on the fundamental level
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Stretched Horizon

Stretched horizon is a surface placed close to the actual
horizon, in front of it, such that g00 � 1
Introduced for two, actually different reasons

as a matter of convenience, phenomenology of BH
“Membrane paradigm"of T. Damour (1978)...
M. Parikh and F. Wilczek (1997)

As a matter of principle, UV cut off on validity of field
theory, (’t Hooft (1993), Susskind+ (1993)...)
as we have just discussed
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Conclusion to Introduction

Limiting temperature, modification of QFT favored by BH.
(Actually, very simple and straightforward reasoning)

To continue with QFT one switches to stretched horizon
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Part II: Stringy Horizon
Consider BH formation by throwing matter focused inside
For a distant observer matter falls infiitely long
Long-string picture (of L. Susskind):
near the horizon, ρ ∼ ls there is single long string. Hope:

Slong string = SBH (?)

Picture motivated by the membrane paradigm, need for the
limiting temperature, elements of string theory
Advantages:

UV divergence is resolved by ls 6= 0
SBH ∼ (Area) comes out naturally

Caution: BH physics depends on observer.
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Many questions left

Further questions left:

What keeps the long string at ρ ∼ ls?

How to get quantitatively S = (Area)/4GN?

Qualitative picture vs fundamental strings?
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Main results

(Somewhat modified) picture woks on fundamental level:

For type II Superstrings in Rindler space ( Large BH)

For heterotic strings in Rindler space
and does not work for bosonic strings

The structure of the Euclidean stretched horizon is explicit
in terms of a zero mode of a scalar field ,
or long string in a cigar-shape background
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Main tool: thermal scalar

A complementary view on the Hagedorn transition
(in flat space):

Hagedorn divergence due to high-mass states is
equivalent to Higgs-type scalar particle instability,
the scalar lives in spatial dimensions only

m2
thermal scalar =

(
β − βHagedorn

)
2π(α′)2

To show the equivalence is an easy exercise by using the
polymer, or random-walk formulation of Euclidean field
theory (Atik-Witten)
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Thermal scalar as a wrapped stringy state

Mass of the thermal scalar hits zero at β = βHagedorn.
What happens next–not clear apriori.

It is also straightforward to demonstrate that thermal
scalar correspond to the string once wrapped around
compact Euclidean time. The time dependence is fixed by
periodicity and we are left with 3d coordinates

To work with BH one needs to workout generalizations of
thermal scalar to curved space
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Thermal scalar in curved space

S =

∫
dD−1x

√
Ge−2φ (4)

·
(

Gij∇iϕ∇jϕ∗ +
1

4π2(α′)2 (β
2G00 − β2

Hagedorn)ϕϕ
∗
)

In Rindler space (a is the Rindler accelaration)(
−∂2

ρ−
1
ρ
∂ρ+

1
4π2(α′)2 (β

2a2ρ2−β2
Hagedorn)

)
ϕn(ρ) = λnϕ(ρ)

Solutions:

ϕn(ρ) = exp
(
− aβρ2

4πα′

)
Ln
(aβρ2

2πα′

)
, λn = (aβ(1+2n)−2π)

Zero mode at β = βHagedorn, (absent in flat space).
Dominates partition function.
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Picture emerging
Build up BH by throwing a thin shell of δM to BH of mass
Minitial . (A kind of mean-field approximation).
It ends up as a long string in a layer of thickness δρ ∼ ls.
Density of states seen by the distant observer is

ω(δM) ∼
exp(βHawkingδM)

δM
, or βHawking = βHagedorn

Integrated to the Bekenstein entropy:

δSBH = 8πGNMδM → SBH = (Area)/4GN

Does not fall onto BH because of the entropic (or QM)
pressure, somewhat similar to Earth atmosphere.
Zero mode is exact in α′ in Rindler case, supestrings
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Conclusions to part II

The idea that the Hagedorn temperature provides the
limiting temperature for BH is supported by some
first-principle calculations within string theory.
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Holography as a messanger from strings

Amusingly enough, lessons from strings on the gravitational
scale might be adjusted to Yang-Mills theories
(which we started from)

The means is holography: strings live in curved extra
dimensions, while gauge theory lives on a flat boundary.
Most famous, is the duality for N = 4 SUSY YM
In case of ordinary YM, Witten constructed a model which
is in the same universality class in infrared as large-Nc YM.
Generalized to incorporate quarks (Sakai-Sugimoto model).

From our perspective, it is crucial that the geometry in
extra dimensions is the same cigar-shaped
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Compact dimensions

There are two compact dimensions:

Euclidean time, periodic, τ ∼ τ + βτ (z) where
periodocity depends on extra coordiante z,
z → 0 corresponds to Yang-Mills in UV, z → zhorizon

correponds to YM in IR

another coordinate σ ∼ σ + βσ(z)
Wrapping around σ counts the topological charge
associated with the stringy state

From first principles, at T = 0 the (τ + z) space is a
cylinder and (σ + z) is cigar shaped, βσ(zhorizon) = 0

At T = Tdeconfinement the geometries are interchanged
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Link to Yang-Mills phenomenology

For string (action) ∼ L · (tension) and

βτ (zH) = 0 or βσ(zH)) = 0

means vanishing classical action for wrapped states
At T = 0 this is true for instantons (topologically charged)
in infrared, z → zhorizon, True phenomenologically
At T = Tdeconfinement the (σ + z) geometry is changed into a
cylinder and instantons become surpressed; true and known

A novel feature: At T = Tdeconfinement the non-perturbative
becomes 3d, instead of 4d at T = 0.
Dimensional reduction: phase transition at T = Tdeconfnement

Specific for holography, and, probably, true on the lattice
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Phenomenological echo of the zero mode

Classically, action for defects,

Sdefect = L · (Tension)

vanishes for any wrapping number.
QM only lowest level survives as zero mode at the tip of the
cigar (see discussion above)
Phenomenologically, this means that only instantons with

Qtopological = ±1

are ample even in the infrared.
Probably supported by the lattice
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Further direction: action on the stretched
horizon

Originally, stretched horizon was introduced as pure
fictitious, to describe observations on BH from large
distance. There is fictitious liquid living on the stretched
horizon. Now, duality converts properties of fictitious liquid
into properties of real YN liquid in infrared.

A well-known example is prediction

η

s
≥ 1

4π
where η is shear viscosity, s is the entropy density
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Conclusions to part III

There is phenomenological feedback from fundamental,
garvity-related strings to phenomenology of
non-perturbative, or infrared physics of YM theory.
But it is rather about isolated examples than about a
well-developed mashinary


