

#### **Heavy-Flavour Measurements at the LHC**



**MinJung Kweon** 

ICNFP2015 Crete, Greece August 28, 201



# OUTLINE

Why Heavy flavours in heavy-ion physics

Heavy-flavour observables

**Overview of heavy-flavour measurements** 

in pp, p-Pb, Pb-Pb collisions

Summary

#### **Deconfined QCD matter and its probes**

Heavy-ion (HI) collisions at LHC energies

Deconfined QCD matter (Quark-Gluon Plasma phase) is available

(lifetime ~ O(10 fm/c))



 Hard (large Q<sup>2</sup>, large mass scale) probes are produce beginning of the collisions →probe the whole evolutie





#### Hard tomographic

- Hard-probes of QCD matter:
- jets,  $\gamma$ ,  $Q\overline{Q}$  ... well controlled e
- self-generated in collision at τ
- tomographic probes of hottes

& densest phases of medium.



#### MinJung Kweon, Inha University

#### What's special about heavy quarks

|                                                                 |        | Pole mass M                             |
|-----------------------------------------------------------------|--------|-----------------------------------------|
| Heavy quarks                                                    | Charm  | $\sim 1.3$ –1.7 GeV                     |
| $\clubsuit$ Large mass ( $m_q \gg \Lambda_{QCD}$ )              | Bottom | $\sim 4.5$ –5 GeV                       |
| $\rightarrow$ hard probes even at low $p_{T}$                   | Тор    | $173.1 \pm 0.6 \pm 1.1 \text{ GeV}$ (?) |
| → produced in the early stages of the HI collision PDG; TevEWWG |        |                                         |

 $t_{charm} \sim 1/m_c \sim 0.1 \text{ fm/c} << \tau_{QGP} \sim O(10 \text{ fm/c})$ 

with short formation time;

Interactions with QGP don't change flavour identity

Uniqueness of heavy quarks: cannot be destroyed/created in the medium

traverse the medium interacting with its constituents
A natural probe of the hot medium created in HI interactions



#### Heavy quarks as medium probes

q: colour triplet **u,d,s:** m~0, C<sub>R</sub>=4/3 (difficult to tag at LHC) g: colour octet 00000  $m=0, C_{R}=3$ **g:** > E loss, dominant at LHC Q: colour triplet **c:** m~1.5 GeV,  $C_R = 4/3$ € small m, tagged by D's **b:** m~5 GeV,  $C_R = 4/3$ large mass  $\rightarrow$  dead cone  $\rightarrow$  < E loss 'Quark Matter E Parton Energy Loss by $\rightarrow$  medium-induced gluon radiation $\rightarrow$  collisions with medium constituents $\Delta E(\varepsilon_{medium}; C_R, M, L)$  $\Delta E_g > \Delta E_{c,m,L}$  $\Delta E_g > \Delta E_{c,m,dE_m}; C_R, m, L)$ Prediction: $\Delta E_g > \Delta E_{c,m,dE_m} > \Delta E_{c,m,dE_m}$ Prediction: $\Delta E_g > \Delta E_{c,m,dE_m} > \Delta E_{c,m,dE_m}$ Prediction: $\Delta E_g > \Delta E_{c,m,dE_m} > \Delta E_{c,m,L}$ Prediction: $\Delta E_g > \Delta E_g > \Delta E_{c,m,dE_m} > \Delta E_{c,m,L}$ Prediction: $\Delta E_g > \Delta E_g > \Delta E_{c,m,R}$ Prediction: $\Delta E_g > \Delta E_g > \Delta E_{c,m,R}$ Prediction: $\Delta E_g > \Delta E_g > \Delta E_g$  $R_{A,A} < R_{A,A} < R_{A,A}$  $R_{A,A} < R_{A,A}$ 

#### **Collectivity in the QGP**

- in general: initial spatial asymmetry
  - → azimuthal asymmetry of particle emission in momentum space
- heavy quarks participate in collectivity of the medium in case of sufficient re-scattering
  - $\rightarrow$  approach to thermalization
- high p<sub>T</sub>: path-length dependence of energy loss introduces azimuthal asymmetry as well



#### Heavy flavours Results in pp collisions at $\sqrt{s} = 7$ TeV and $\sqrt{s} = 2.76$ TeV

#### Baseline for AA and p-A collisions Test perturbative QCD calculations



- Heavy-flavour cross section measured in various channels
- pQCD-based calculations (FONLL, GM-VFNS, k<sub>T</sub> factorization) compatible

with data FONLL: JHEP 1210 (2012) 137, GM-VFNS: Eur. Phys. J. C 72 (2012) 2082, k<sub>T</sub> factorisation: arXiv:1301.3033

• Similar conclusion at  $\sqrt{s} = 2.76$  TeV

## Heavy-flavour cross section in pp at $\sqrt{s} = 2.76$ , 7 TeV



 $= 5 \text{ nb}^{-1}$ 



#### Heavy-flavour production cross sections



- Calculation based on pQCD (ex. FONLL) describes consistently energy dependence of total cross sections
- Charm (beauty) x~10 (~100) from RHIC (200 GeV) to LHC
- Precision measurement required for quarkonia reference!

#### More on production mechanism: Multiplicity dependence of heavy-flavour production





double parton scattering J. High Energy Phys., 06 (2012) 141

ALI-PUB-92971

 $(dN_{ch}/d\eta) / \langle dN_{ch}/d\eta \rangle$ 

**MPIs** involving only light quarks and gluons, or for heavy-flavour production?

D-meson, non-prompt J/ $\psi$  yields increase with charged-particle multiplicity presence of MPIs and contribution on the harder scale?

#### More on production mechanism: Multiplicity dependence of heavy-flavour production





 LHCb: double charm production agrees better with models including double parton scattering J. High Energy Phys., 06 (2012) 141

tion lucing 0.4 B fraction hypothesis:  $\times 1/2$  (2) at low (high) multiplicity 0.2 0.4 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.

**MPIs** involving only light quarks and gluons, or for heavy-flavour production?

Same behavior for open and hidden charm production  $\rightarrow$  this behaviour is most likely related to the  $c\bar{c}$  and  $b\bar{b}$  production processes, but not significantly influenced by hadronisation!

MinJung Kweon, Inha University

# Heavy Flavera Results in p-Pb collisions



#### **Nuclear modification factor**

 $R_{AA} = \frac{dN_{AA} / dp_T}{\langle N_{AA} \rangle \times dN_{PT} / dp_T} = \frac{dN_{AA} / dp_T}{\langle T_{AA} \rangle \times d\sigma_{PT} / dp_T}$ 

**Binary scaling based on the Glauber Model** 

 $R_{AA} = 1$ : binary scaling  $R_{AA} \neq 1$ : medium effect









*R*<sub>pPb</sub> consistent with unity within uncertainties

ALICE ● D<sup>0</sup>, D<sup>+</sup>, D<sup>\*+</sup> mesons (mid rapidity): can be described by CGC calculations, (arXiv:1308.12) pQCD calculations with EPS09 nuclear PDF and a model including energy loss in cold nuclear matter, nuclear shadowing and k<sub>T</sub>broadening (PRC 75(2007)064906)



• c,b→ $\mu$  (forward, backward rapidity)

CMS ● B<sup>+</sup>, B<sup>0</sup>, B<sub>s</sub> (mid rapidity): FONLL expectation as a pp reference









Described by pQCD models including cold nuclear matter effects Cold nuclear matter effects are small at high  $p_T$ !

)0





#### D-meson RAA in p-Pb and Pb-Pb



suppression observed in Pb-Pb comes from strong interaction of charm quarks with the medium

## $8 < p_T < 12 \text{ GeV/c}$

• more statistics needed at low  $p_T$ where an enhancement of  $D_s^+/D$  due to coalescence is predicted:

> Kuznetsova, Rafelski EPJ C 51 (2007) 113 He et al. PRL 110 (2013) 112301 Andronic et al. PLB 659 (2008) 149

ALICE

### D-meson R<sub>AA</sub> in p-Pb and Pb-Pb



 p-Pb results indicate that the suppression observed in Pb-Pb comes from strong interaction of charm quarks with the medium

#### D<sub>s</sub><sup>+</sup> suppressed by a factor ~3 for 8 < p<sub>T</sub> <12 GeV/c</li>

• more statistics needed at low  $p_T$ where an enhancement of  $D_s^+/D$  due to coalescence is predicted:

> Kuznetsova, Rafelski EPJ C 51 (2007) 113 He et al. PRL 110 (2013) 112301 Andronic et al. PLB 659 (2008) 149

ALICE

#### Heavy-flavour decay lepton RAA



- Significant suppression at high  $p_T$  in central Pb-Pb collisions w.r.t. binary scaled pp collisions
  - HF decay electrons (|y| < 0.6) and muons (2.5 < y < 4)  $R_{AA}$  are similar
  - Less suppression in more peripheral collisions

## Heavy-flavour decay lepton RAA



• Significant suppression at high  $p_T$  in central Pb-Pb collisions w.r.t. binary scaled pp collisions

- HF decay electrons (|y| < 0.6) and muons (2.5 < y < 4)  $R_{AA}$  are similar
- Less suppression in more peripheral collisions
- $R_{AA}$  of non-prompt J/ $\psi$ , electrons from beauty decays shows

#### hint of suppression

# ALICE

#### Cold nuclear matter effects are small (*R*<sub>pPb</sub> ~ 1)

#### Suppression due to dense/hot partonic medium effect!



• Significant suppression at high  $p_T$  in central Pb-Pb collisions w.r.t. binary scaled pp collisions

- HF decay electrons (|y| < 0.6) and muons (2.5 < y < 4)  $R_{AA}$  are similar
- Less suppression in more peripheral collisions
- $R_{AA}$  of non-prompt J/ $\psi$ , electrons from beauty decays shows

#### hint of suppression

## b-Jet RAA

CMS



- Evidence of b-jet suppression in PbPb collisions
- Suppression favors pQCD model with stronger jet-medium coupling

## b-Jet RAA

CMS

#### Cold nuclear matter effects are small (*R*<sub>pPb</sub> ~ 1)

Suppression due to dense/hot partonic medium effect!



- Evidence of b-jet suppression in PbPb collisions
- Suppression favors pQCD model with stronger jet-medium coupling

#### Color charge dependence?: D-meson $R_{AA}$ vs. $\pi^{\pm}$



ALIC



arXiv:1506.06604

• D-meson and  $\pi R_{AA}$  are compatible within uncertainties

Djordjevic, PRL 112(2014)042302 Wicks et al., NPA 872(2011)265 Djordjevic, PLB 737(2014)298

- Agreement with models including energy loss hierarchy: ΔE(g) > ΔE(u,d,s) > ΔE(c), different shapes of the parton p<sub>T</sub> distributions, different fragmentation functions, soft production mechanisms for low-p<sub>T</sub> π
- Measurement not yet conclusive → precision measurement required!

#### Quark mass dependence?: D-meson R<sub>AA</sub> vs. non-prompt J/ψ

 $\Delta E(g) > \Delta E(u,d,s) > \Delta E(c) > \Delta E(b)$  could be reflected in  $R_{AA}(B) > R_{AA}(D) > R_{AA}(\pi)$ 



## Azimuthal anisotropy of heavy flavours



- Positive v<sub>2</sub> for D mesons and leptons from heavy-flavor hadron decays
- Similar v<sub>2</sub> for D mesons and charged-particles
- Hint for increasing flow from central to semi-central collisions
- Confirmation of significant first of significant first of charm quarks with the medium
   0.25

## Azimuthal anisotropy of heavy flavours



- Positive v<sub>2</sub> for D mesons and leptons from heavy-flavor hadron decays
- Similar v<sub>2</sub> for D mesons and charged-particles
- Hint for increasing flow from central to semi-central collisions
- Confirmation of significant for the medium
   Pb-Pb, s<sub>NN</sub> = 2.76 TeV

## R<sub>AA</sub> and v<sub>2</sub>: Comparison with models





1666 (2011), TAMU M. He, R. J. Fries and R. Rapp, arXiv:1204.4442[nucl-th],

UrQMD arXiv:1211.6912, J. Phys. Conf. Ser. 426, 012032 (2013), Cao, Quin, Bass arXiv:1308.0617

## **Summary and Outlook**

#### **Summary**

- pp data are described by perturbative QCD ⇒ Heavy flavours are a calibrated probe
- Pb-Pb data:
  - Hints of a stronger suppression for charm than for beauty at intermediate/high  $p_{T}$ .
  - No strong conclusions drawn yet from the comparison of D-meson and pion R<sub>AA</sub>, given the current uncertainties
  - Positive flow of charm hadrons and heavy-flavour decay leptons ⇒ participating in collectivity of the medium with sufficient re-scatterings
- p-Pb data:
  - Results consistent with pQCD + shadowing ⇒ the observed suppression in Pb-Pb collisions is due to a dense/hot partonic medium effect

#### **Outlook**

- High precision, more statistics, extended pT coverage (high and low pT)
- Smaller uncertainties and new differential measurements will help to
  - constrain model calculations quantitatively
  - address open questions concerning the flavour dependence of parton energy loss, their path-length dependence, thermalization of charm and beauty, heavy-flavour jet pair asymmetries and angular correlations, heavy-flavour jet fragmentation functions/subjet structure, coalescence including heavy quarks ...

## LHC run II, III, IV data will answer to the open questions

## Thank you for your attention!

## **Extra Slides**







#### **ALICE detectors : Heavy-flavour decay electrons**







<del>ALIC</del>E

#### **CMS** detectors



#### More differential information: Heavy flavour correlations



 D-hadron correlations in pp show good agreement with expectations from Pythia (different tunes)



#### More differential information: Heavy-flavour electron-hadron correlations



ALI-PREL-62026

The double ridge also observed in heavy-flavour sector! poster by E. Pereira

# The mechanism (Chec double?) it get an an a set of the mechanism (CGC? Hydro?) that generates it affects a

#### Color charge dependence?: D-meson R<sub>AA</sub> vs. π<sup>±</sup>



## **Observables constraining models**



TAMU elastic: arXiv:1401.3817
 Djordjevic: arXiv:1307.4098
 Cao, Qin, Bass: PRC 88 (2013) 044907
 WHDG rad+coll: Nucl. Phys. A 872 (2011) 265
 BAMPS: PLB 717 (2012) 430
 MC@sHQ+EPOS: PRC 89 (2014) 014905
 Vitev, rad+dissoc: PRC 80 (2009) 054902
 POWLANG: JPG 38 (2011) 124144
 Various observables provide constraints for the models

ALI-PREL-77576

## **Outlook**



Upgrade