Results from the Double Chooz Experiment

Michiru Kaneda

(Tokyo Institute of Technology)

On behalf of the Double Chooz Collaboration

26/Aug/2015, Kolymbari, Crete, Greek

- \bar{v}_e disappearance observation by using reactors is an established method to measure θ_{13} of neutrino mixing angle.
 - Reactors are free and rich neutrino source.
 - Pure θ_{13} measurement is possible at distance of ~1km from the reactor.
- Precise θ_{13} measurement is important input for the neutrino problems.

Antineutrino Detection

- Two different timing signals are generated at IBD event.
- Inverse Beta Decay (IBD) Prompt signal:
 - \rightarrow e⁺ ionization and e⁺e⁻ annihilation.
 - \rightarrow 1-8 MeV.
 - Delayed signal:
 - \rightarrow Neutron capture on a nucleus.
 - \rightarrow Gd capture
 - \rightarrow ~8MeV, ~30 μs delayed from prompt signal.
 - \rightarrow Higher energy. Only in Gd-loaded region.
 - \rightarrow H capture
 - \rightarrow ~2.2MeV, ~200 μs delay from prompt signal.
 - \rightarrow Independent from Gd capture. Higher statistics.

•Prompt signal energy (visible energy) is related to the initial neutrino energy:

id/F

v_e+p→e++n

e⁺

 \overline{v}_{e}

e

$$E_{vis} = E_{e^+} + 2m_e$$

$$\approx E_{\overline{v}_e} - (m_n - m_p) + m_e$$

$$\approx E_{\overline{v}_e} - 0.78 \text{MeV}$$

- The reactor neutrino experiment at Chooz, France.
- Collaboration:
 - \rightarrow ~150 people from 7 countries.
 - \rightarrow Brazil, France, Germany, Japan, Russia, Spain and USA.
- Far detector is running since Apr/2011.
- Near detector data taking started this year.

The Double Chooz Detector

Outer veto (OV)

- Plastic scintillator strip.
- Identify cosmic μ .

Inner Detector

- v-target:
 - \rightarrow Gd-loaded (1 g/l) liquid scintillator (10.3m³) in acrylic vessel.
 - \rightarrow Neutrino interaction point.
- γ-catcher:
 - \rightarrow Liquid scintillator (22.3m³) in acrylic vessel.
- Buffer region:
 - \rightarrow Mineral oil (110m³) in stainless steel vessel.
 - \rightarrow 390 PMTs (10") are set in this region.

Inner veto (IV)

- Liquid scintillator (90m³) with 78 PMTs (8") in stainless steel vessel.
- Identify cosmic μ , reduce environmental γ

The Double Chooz Data

- 467.90 live days data with reactors for Gd analysis (Gd-III, <u>JHEP10(2014)086</u>).
 - \rightarrow Doubled events from previous result (Gd-II, <u>PRD86(2012)052008</u>).
 - \rightarrow 7.24 live days data of reactor off.
- 452.72 live days data with reactor for H analysis

(H-III, a paper is being prepared).

- \rightarrow Doubled events from previous result (H-II, <u>PLB723(2013)66-70</u>).
- \rightarrow 7.15 live days data of reactor off.

Gadolinium Analysis

- Single event selection
 - \rightarrow Veto 1ms after μ event (high energy event).
 - \rightarrow Light noise event rejection.
- IBD selection
 - \rightarrow 0.5 < E_{prompt} < 20 MeV, 4 < E_{delayed} < 10 MeV
 - \rightarrow 0.5 < Δ T <150 µs, Δ R < 100 cm
 - v_{e} \rightarrow No events within 200 µs before and 600 µs after prompt event
 - \rightarrow No OV hit
 - \rightarrow IV-veto: for fast neutron, accidental events
 - \rightarrow FV veto (vertex reconstruction goodness): for stopping μ events
 - \rightarrow ⁹Li likelihood method veto (likelihood made by ¹²B data): for cosmogenetic events

	Deceter On	Deceler Off
	Reactor On	Reactor Off
Live-time	460.67	7.24
IBD Candidate	17351	7
Reactor v_e	17530±320	1.57±0.47
⁹ Li/ ⁸ He	447 ⁺¹⁸⁹ -74	7.0 ^{+3.0} -1.2
Correlated	278±23	3.83±0.64
Accidental	32.3±1.2	0.508±0.019
Total	18290 ⁺³⁷⁰ -330	12.9 ^{+3.1} -1.4

e.

e⁺

Reactor Rate Modulation Analysis

• Fit the IBD rate of different reactor power data (2-on, 1-off, 2-off)

$$R^{obs} = \left(1 - \sin^2\left(2\theta_{13}\right)\sin^2\left(\frac{\Delta m_{13}^2 L}{4E}\right)\right)R^{IBD} + B$$

- w/ background constraint with 2-off data:
 - $sin^{2}(2\theta_{13})=0.090^{+0.034}_{-0.035}$, B=1.56^{+0.18}_{-0.16} (day⁻¹)
- Background model independent fit (no constraint on B, unique of DC): $\rightarrow sin^2(2\theta_{13})=0.060\pm0.039$, B=0.93^{+0.43}-0.36 (day⁻¹)

Rate + Shape Analysis

- $\sin^2(2\theta_{13})=0.090^{+0.032}_{-0.029}$ $\rightarrow \chi^2/ndf = 52.2/40$ $\rightarrow Background rate = 1.38\pm0.14 (day^{-1})$
 - \rightarrow 5.3% improvement of precision from Gd-II.

Hydrogen Analysis

- Compared to Gd analysis
 - → Higher statistics
 - \rightarrow Events in GC can be used, too.
 - \rightarrow Lower delayed energy and longer ΔT of prompt-delayed events.
 - \rightarrow More background.
 - \rightarrow A dominant background is the accidental background.
- Single event selection
 - \rightarrow Veto 1.25ms after μ event (high energy event).
 - \rightarrow Light noise event rejection.
- IBD selection
 - \rightarrow 1.0 < E_{prompt} < 20 MeV
 - \rightarrow 1.3 < E_{delayed} < 3 MeV
 - ightarrow 0.5 < ΔT < 800 μ s
 - $\rightarrow \Delta R < 1200 \text{ cm}$
 - $\rightarrow\,$ They are loose selections, and variables are used in ANN.
 - \rightarrow No events within 800 μs before and 900 μs after prompt event
 - \rightarrow No OV hit is required, FV veto, ⁹Li likelihood veto, IV-veto
 - → Artificial Neural Network, Multiplicity Pulse Shape Veto (using flash-ADC information)
 - \rightarrow New for H-III analysis

Artificial Neural Network (ANN)

- New multiple variable analysis was deployed. \rightarrow Input variables: E_{delayed}, Δ T, Δ R
- Background reduction:

 \rightarrow H-II (cut based): 73.45 ± 0.16 (day⁻¹)

 \rightarrow H-III (ANN): 4.334 ± 0.011 (day⁻¹)

DC-III (n-H) data summary

	Reactor On	Reactor Off		Uncertainty(%)
Live-time	455.57	7.15	Reactor flux	1.7
IBD Candidate	31835	63	Detection efficiency	1.0
Reactor v_e	30086±606	2.34±0.70	⁹ Li/ ⁸ He	+0.9/-0.5
⁹ Li/ ⁸ He	433 ⁺²⁶⁰ -150	6.8 ^{+4.1} -2.4	Correlated	0.2
Correlated	706±68	10.4±1.4	Accidental	<0.1
Accidental	1974.4±4.8	30.9±0.4	Statistics	0.6
Total	33199 ⁺⁶⁶⁰ -630	50.4 ^{+4.4} -2.9	Total	+2.3/-2.1

H-III/H-II

1.0

0.6

0.6/0.3

0.3

(0.2 at H-II)

0.5

0.7

H-III Rate + Shape Analysis

• $\sin^2(2\theta_{13})=0.124^{+0.030}_{-0.039}$ \rightarrow H-II: $\sin^2(2\theta_{13})=0.097\pm0.048$ \rightarrow Gd-III: $\sin^2(2\theta_{13})=0.090^{+0.032}_{-0.029}$

H+Gd Reactor Rate Modulation Analysis

- sin²(2θ₁₃)=0.090±0.033
 - \rightarrow H-only: sin²(2 θ_{13})=0.098^{+0.038}-0.039
 - \rightarrow Gd-III: sin²(2 θ_{13})=0.090^{+0.034}-0.035

No correlation between H-Gd is assumed. (It is minimal impact.)

Unexpected Spectrum Distortion

- Unexpected spectrum distortion is found above 4 MeV of the prompt energy.
 → Similar distortions are seen in both Gd and H analyses.
- Energy scale around 5 MeV is confirmed by Carbon capture events.
- No correlation with any backgrounds is found.
- Strong correlation with the reactor power is confirmed.
- The effect on θ_{13} measurement is insignificant compared to the uncertainty.

Near Detector Prospect

Total Charge (Arbitrary Unit)

- Spallation neutron capture spectrum of early ND data compared to FD data.
 - \rightarrow Similar spectrums can be seen:
 - \rightarrow Indicate feasibility of IBD measurement.
 - \rightarrow Radiopurity is well controlled.
 - \rightarrow Shielding works as expected.
- 0.01~0.015 uncertainty of $\sin^2(2\theta_{13})$ is expected in 3 years.

Summary and Prospect

- Gd result:
 - \rightarrow Reactor Rate Modulation: $sin^2(2\theta_{13})=0.090^{+0.034}_{-0.035}$
 - \rightarrow Rate+Shape: $sin^{2}(2\theta_{13})=0.090^{+0.032}-0.029$
- Gd+H combined result:
 - \rightarrow Reactor Rate Modulation: sin²(2 θ_{13})=0.090±0.033
- Data taking with Near detector is on going.
 - \rightarrow Drastic reduction of the systematic uncertainty is expected.
 - \rightarrow Additional physics results (e.g. sterile neutrino) will come, too.

Backgrounds: ⁹Li/⁸He (Gd-III)

- Rejected by:
 - \rightarrow Likelihood veto (new).
- Measured by ⁹Li enriched data.
 - $\rightarrow \Delta T$ for rate.
 - \rightarrow Visible energy for shape.
- Rate: 0.97^{+0.41}-0.16 (day⁻¹)
 → DC-III/DC-II = 0.78

Backgrounds: Correlated Backgrounds (Gd-III)

- Rejected by:
 - \rightarrow Vertex reconstruction goodness(F_v) (new).
 - \rightarrow OV cut, IV vetos.
- Measured by IV-tagged events.
- Rate: 0.604±0.051(day⁻¹)
 → DC-III/DC-II = 0.52

Backgrounds: Accidental Coincidences (Gd-III)

- Rejected by:
 - \rightarrow Correlation distance cut (new).
 - \rightarrow Timing cut.
- Measured by the data in off-time windows.
- Rate: 0.070±0.003 (day⁻¹)
 → DC-III/DC-II = 0.27

- Energy correlation between ID and IV prompt energy for rejected events by IV-veto.
 - →Lower rich region is dominated by compton gammas (mainly Thallium).

 \rightarrow Others are correlated background.

• ~25% of accidental BG is rejected after ANN.

Multiplicity Pulse Shape Veto (MPS) (H-III)

Energy calibration improvement

Systematic uncertainties on energy scale

Source	Uncertainty (%)	Gd-III/Gd-II
Non-uniformity	0.36	0.84
Instability	0.50	0.82
Non-linearity	0.35	0.41
Total	0.74	0.65

Reactor Off Data

Near Detector Prospect

new analysis (wrt DC-II)

stematics dependent→ <u>statistics dominated</u> st BG model fromDC-III)

- ND flux information can suppress current largest uncertainty of the reactor flux.
- 0.01~0.015 uncertainty of sin²(2θ₁₃) is expected in 3 years.
- In addition, new analyses such sterile neutrino search can be studied.

- Construction (w/o OV) was finished in the last Autumn.
- Commissioning was done and now it is starting data taking.
- New results with ND are coming soon.

Near Detector Prospect

Δ

Total years of data-taking since April 2011