Beyond-the-Standard Model Higgs Physics using the ATLAS Experiment 4th International Conference on New Frontiers in Physics

Kolymbari, Greece (24-30 August 2015)

Loan Truong on behalf of the ATLAS collaboration

INFN Trieste, Gruppo Collegato di Udine + ICTP and SISSA, Trieste

August 27, 2015

- Status of Higgs measurements (see Michaela Queitsch-Maitland's and Nan Lu's talks on Tuesday)
- The BSM Higgs Physics searches at ATLAS
- Highlighted results on
 - High mass searches in WW/ZZ final states
 - Lepton flavour violating (LFV) decay
 - Lightest neutral pseudoscalar Higgs (a) decay (NMSSM)
 - 3 photon search
 - BSM constraints from Higgs couplings
 - Invisible decays of the Higgs boson
- Summary

Combination of Higgs Measurements

• Summary of the signal strength measurements

• Likelihood contours in the $(\mu^{f}_{ggF+ttH},\mu^{f}_{VBF+VH})$ plane

- Higgs mass: 125.36±0.37(*stat*)±0.18(*syst*) GeV
- Link: arXiv:1507.04548

From Pierre Savard - EPS2015

BSM HIGGS SEARCHES

A non-exhaustive list... Many of the searches below were performed in Run 1

No significant excess yet

Strategies:

- Search for additional Higgs boson
- Search for exotic decays of the 125GeV-Higgs
- Use the 125GeV Higgs as a tool to find new physics
 - Tag a Higgs
 - Use SM Higgs measurements to constrain BSM parameter space
- More new results:
 - $H \rightarrow hh \rightarrow b\bar{b}b\bar{b}$
 - 3 photon search

Additional-heavy Higgs decaying to WW/ZZ

- Search for a heavy neutral scalar
- Final states:
 - $WW \rightarrow \ell \nu \ell \nu, \ell \nu j j$ HIGG-2013-19
 - $ZZ \rightarrow \ell\ell\ell\ell, \ell\ell\nu\nu, \ell\ell qq, \nu\nu qq$ arXiv:1507.05930
- Results interpreted separately for VBF, ggF production modes. Upper limits for heavy Higgs boson which has a narrow width. At 95% CL:

Limits on	m _H	Upper Limit (fb) for H production mode	
		ggF	VBF
$\sigma_H \times BR(H \rightarrow WW)$	1500 GeV	21	6
$\sigma_H \times BR(H \to ZZ)$	195-950 GeV	530-8	310-9

• No significant deviations observed

Lepton flavour violating decays

- The LFV Higgs decays $(H \rightarrow \tau \mu, \tau e, \mu e)$ arise at tree level based on assumed flavor violating Yukawa interactions arXiv:1209.1397
- Search for LFV Higgs decays to τ and μ in hadronic τ decays arXiv:1508.03372
- Results: fit to the reconstructed mass distribution in data
 - Best fit of $BR(H \rightarrow \mu \tau)$: 0.77 \pm 0.62 %
 - Upper limit on $BR(H \rightarrow \mu \tau)$ @ 95% CL: 1.85%(1.24%) obs(exp.)

The reconstructed mass of the system of observed muon, τ (hadronic decay products) & \mathcal{E}_{T}^{miss} objects by means of the Missing Mass Calculator (MMC) distribution

Next-To-Minimal Supersymmetric SM

NMSSM arXiv:1505.01609

- Search for the decay to a pair of the lightest neutral pseudoscalar Higgs (*a*) of either the 125 GeV Higgs (h) or a second CP-even Higgs (H)
- One a boson decays to 2 μ and the other decays to 2 τ
- Results:
 - The most stringent upper limit: 3.5% for $m_a = 3.75$ GeV

Limit for $\sigma_{ggH_{SM}} \times BR$ of h SM decays to aa $\times BR$ of a decays to $\tau\tau$ vs m_a

Search for 3 γ

- \bullet Search for events with at least 3 γ EXOT-2013-24
- Model-independent interpretations are the first of their kind:
- For SM Higgs $h \rightarrow aa \rightarrow \gamma\gamma\gamma\gamma\gamma$: $\sigma \times BR(h \rightarrow aa) \times BR(a \rightarrow \gamma\gamma)^2 < 10^{-3} \times \sigma_{SM}$ for 10 GeV $< m_a < 62$ GeV

• For heavy Higgs boson-like scalar: $\sigma_H \times BR(H \rightarrow aa) \times BR(a \rightarrow \gamma\gamma)^2 < 0.02$ to 0.001 pb (depending upon m_H, m_a)

BSM constraints from Higgs couplings

• HIGG-2015-03

- Use the measured production + decay rates of the Higgs boson ($\gamma\gamma$, ZZ, WW, Z γ , bb, $\tau\tau$, & $\mu\mu$; $t\bar{t}h$ with $h \rightarrow \gamma\gamma$, $b\bar{b}$ & multileptons)
 - Probe the scaling of the couplings with mass
 - Set limits on parameters in extensions of the SM
 - Composite Higgs boson
 - An additional electroweak singlet
 - Two-Higgs-doublet models
- Taking into account the measured m_H in the $\gamma\gamma$ & ZZ
 - Set lower limit on the pseudoscalar Higgs boson mass in the "hMSSM" arXiv: 1307.5205 [hep-ph]

"Mass scaling" of couplings

- arXiv: 1303.3879 [hep-ph]
- Each coupling in terms of vev $(v \approx 246 \text{ GeV}) \& \epsilon$ (note that SM: $\epsilon \rightarrow 0$) $\kappa_{f,i} = v \frac{m_{f,i}^{\epsilon}}{M^{1+\epsilon}}, \kappa_{V,j} = v \frac{m_{V,j}^{2\epsilon}}{M^{1+2\epsilon}}$

Parameter	Obs.	Exp.
ϵ	0.018 ± 0.039	0.000 ± 0.042
М	224^{+14}_{-12} GeV	$246^{+19}_{-16} { m GeV}$

Observed & expected measurements of the mass scaling parameter ϵ & the vev parameter M

2-D confidence intervals as a function of the mass scaling factor ϵ & the vev parameter M

Minimal Composite Higgs Model

- Scalar Naturalness: Higgs → composite pseudo Nambu-Goldstone boson
- Higgs couplings modified as function of compositeness scale-f: ξ = v²/f²

• MCHM4:
$$\sqrt{\kappa} = \kappa_V = \kappa_F = 1\xi$$

• MCHM5:

$$\kappa_V = 1 - \xi, \kappa_F = \frac{1 - 2\xi}{\sqrt{1 - \xi}}$$

- SM recovered in the limit $\xi \to 0$, namely $f \to \infty$
- Results @95% CL obs(exp): MCHM4: f > 710(510) GeV; MCHM5: f > 780(600) GeV

2-D likelihood contours in the (κ_V, κ_F) coupling scale factor plane

Two Higgs Doublet Model

- Two complex SU(2) doublet scalar fields, 4 types of 2HDMs
- Consider the CP-conserving case with 6 sensitive parameters: 4 masses $m_h, m_H, m_{H^{\pm}}, m_A \& 2$ mixing angles α, β
- $\tan \beta = v_1/v_2$: ratio of vevs which satisfy $v_1^2 + v_2^2 = v^2 \approx (246 \text{ GeV})^2$, α : mixing angle between h & H
- Assumptions (for interpretations): 125 GeV is the light higgs, no radiative corrections from BSM for the production of Higgs boson, only SM decays.
 - $g_{hVV}^{2HDM}/g_{hVV}^{SM} = \sin(\beta \alpha), \ g_{HVV}^{2HDM}/g_{HVV}^{SM} = \cos(\beta \alpha)$
 - Convention: $sin(\beta \alpha) \ge 0$
- SM-like alignment limit retrieved at $\cos(\beta \alpha) = 0$

Two Higgs Doublet Model, Type I & II

• Excluded regions by fits to the measured rates of Higgs boson production & decays for type I- & II-2HDM

Two Higgs Doublet Model, Lepton Specific & Flipped

• Excluded regions by fits to the measured rates of Higgs boson production & decays for lepton specific- & flipped-2HDM

Searches for invisible decays of the Higgs boson

- Direct search strategies:
 - Select events with large missing energy, use particles produced associated with the Higgs
 - Assume productions (& acceptance) as in the SM $BR(h \rightarrow ZZ \rightarrow 4\nu) = 1.2 \times 10^{-3}$ (\rightarrow result not sensitive to this)
- Analyses:
 - Z(ightarrow II) H ightarrow inv ($E_{
 m T}^{
 m miss}$) Phys. Rev. Lett. 112, 201802 (2014)
 - $W/Z(\rightarrow jj) H \rightarrow inv (E_T^{miss})$ Submitted to EPJC (2015)

• VBF (
$$ightarrow$$
 jj) H $ightarrow$ inv ($E_{
m T}^{
m miss}$

Observed	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$
0.28	0.16	0.21	0.31	0.41	0.56
0.75	0.33	0.45	0.62	0.86	1.19
0.78	0.46	0.62	0.86	1.19	1.60
0.25	0.13	0.18	0.27	0.35	0.47
	Observed 0.28 0.75 0.78 0.25	Observed -2σ 0.28 0.16 0.75 0.33 0.78 0.46 0.25 0.13	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccc} \mbox{Observed} & -2\sigma & -1\sigma & \mbox{Expected} & +1\sigma \\ \hline \mbox{0.28} & 0.16 & 0.21 & 0.31 & 0.41 \\ \mbox{0.75} & 0.33 & 0.45 & 0.62 & 0.86 \\ \mbox{0.78} & 0.46 & 0.62 & 0.86 & 1.19 \\ \hline \mbox{0.25} & 0.13 & 0.18 & 0.27 & 0.35 \\ \hline \end{array}$

• Summary of 95% CL upper bounds on BR($h \rightarrow inv$), the combination: 0.25(0.27) obs(exp)

Combine direct & indirect limit on $BR(h \rightarrow inv)$

• HIGG-2015-03

- Using statistical method to combine direct + indirect search results (from the measured visible decay rates) → constrain a Higgs portal model of dark matter (next slide)
- Physical boundary BR_{inv} > 0
- The most general result with independent parameters: κ_W, κ_Z, κ_t, κ_b, κ_τ, κ_μ, κ_g, κ_γ, κ_{Zγ}, BR_{inv} (more parametrizations in backup)
- Result @95%CL upper limit of: 0.23(0.24) obs(exp.)

Higgs Portal Interpretation

- Used 90%CL upper limit 0.22(0.23) obs.(exp.) of $BR(H \rightarrow inv)$ instead of 95%CL
- Sensitive for WIMP's mass $< m_h/2$
- Higgs as the only mediator...
- Higgs Portal → spin dependent!
- Form factor (Higgs-nucleon coupling) $f_N = 0.33^{+0.30}_{-0.07}$

Upper limit at 90% CL on the WIMP-nucleon scattering cross section, ATLAS's compared with the spin-independent direct searches

- No significant excess for BSM Higgs physics yet
- Precise measurements of the Higgs boson couplings allow to constrain new phenomena
- Understanding of the real nature of the Electroweak Symmetry Breaking \rightarrow tool to explore new physics!
 - Mass scaling (ϵ : 0.018 ± 0.039, *M* : 224 + 14 12 GeV)
 - Minimal Composite Higgs models (f > 710(780) GeV MCHM4(5))
 - Additional Electroweak Singlets ($\kappa^2 < 0.12$)
 - Two Higgs Doublet Models (Alignment limit within 1σ)
 - Simplified versions of MSSM ($m_A > 370$ GeV)
 - Higgs to invisible decays (BR_{inv} < 0.23)

THANKS!

BACK UP

Additional Real Electroweak Singlet

- Simplest extension: additional real EW singlet, $m_H > 125~{
 m GeV}$
- Couplings \rightarrow mixing gives: $\kappa^2 + \kappa'^2 = 1$
- Coupling (and signal strength as predicted by heavier SM-like Higgs) modified by allowing new decays $BR_{H,new}$, like $H \rightarrow hh$

Result: @ 95%CL: $\kappa^2 < 0.12(0.23)$ obs(exp)

hMSSM

arXiv: 1307.5205 [hep-ph]

• Figure: Excluded region via direct searches for heavy Higgs and fits to the measured rates of observed Higgs production & decays.

- Assumptions
 - h production & decay modes as in the SM
 - stops in ggF and $\gamma\gamma$ not included
 - Same for light staus and charginos
 - Decays to SUSY or heavy-to-light Higgs decays not included
- Result: for 1 < tan β < 60 : m_A > 370(310) GeV

Combine direct & indirect limit on $BR(h \rightarrow inv)$

- Combine direct searches, then adding the measured visible decay rates in a more general coupling fit → constrain a Higgs portal model of dark matter HIGG-2015-03
- Assuming $\Gamma(h \rightarrow \text{undetectable})$ (eg. gg) is negligible
- The visible channels alone (& $\kappa_V \leq 1$): ($BR_{inv} < 0.49(0.48)$ obs (exp)
- Combination visible channels & invisible searches one can remove restrictions of $(\kappa_V \leq 1)$
- Physical boundary $BR_{inv} > 0$
- The most general result with independent parameters: κ_W , κ_Z , κ_t , κ_b , κ_τ , κ_μ , κ_g , κ_γ , $\kappa_{Z\gamma}$, BR_{inv}

• Figure: likelihood scans of the Higg: invisible branching ratio

Higgs to invisible, different parametrizations

	Observed	Expected	Assumptions
Direct search	0.25	0.27	Productions as SM $(\kappa_i = 1)$
Indirect search	0.49	0.48	$\kappa_{Z,W} \leq 1$
Combination	0.23	0.24	None
Comb. 1	0.23	0.23	$\kappa_{Z,W} \leq 1$
Comb. 2	0.18	0.24	one κ_F and one κ_V
Comb. 3	0.16	0.23	one κ_{F} and one $\kappa_{V} \leq 1$

The MMC method is an experimental technique for reconstructing the invariant mass of resonances decaying to a pair of τ leptons. MMC arxiv:1012.4686

- On top of the usual kinematics constraints, use additional information of the τ decay products such as the expected angular distance between the neutrino(s) and the visible decays products of the τ lepton \rightarrow build a better likelihood estimator for $M_{\tau\tau}$
- Allow for a complete reconstruction of event kinematics in the $\tau\tau$ final states with significantly improved invariant mass and neutrino momentum resolutions.
- Can be applied to all $\tau\tau$ event topologies without sacrificing the reconstructed mass resolution.

Coupling scale factor	Type I (fermiophobic)	Type II (MSSM-like)	Lepton-specific	Flipped
κ_V	$\sin(eta-lpha)$			
κ_{u}	$\cos(lpha)/\sin(eta)$			
κ_d	$\cos(\alpha)/\sin(\beta)$	$-\sin(lpha)/\cos(eta)$	$\cos(lpha)/\sin(eta)$	$-\sin(lpha)/\cos(eta)$
κ_ℓ	$\cos(\alpha)/\sin(\beta)$	$-\sin(lpha)/\cos(eta)$	$-\sin(lpha)/\cos(eta)$	$\cos(lpha)/\sin(eta)$

Table : Couplings of the light Higgs boson *h* to weak vector bosons (κ_V), up-type quarks (κ_u), down-type quarks (κ_d), and charged leptons (κ_ℓ), expressed as ratios to the corresponding SM predictions in 2HDMs of various types.

- The hashed bands indicate the uncertainty resulting from the systematic variation of the form factor f_N
- The ATLAS limits on the WIMP-nucleon scattering cross section are proportional to those on the invisible decay branching ratio. They are weaker (stronger) at low mass for scalar (Majorana and vector) WIMPs, and degrade as m_{WIMP} approaches $m_h/2$ as expected from kinematics. The limits are shown for $m_{WIMP} \ge 1$ GeV, but extend to WIMP masses smaller than this value.
- The Higgs portal model is a special case of the spin-independent limits where the Higgs boson is taken to be the only mediator.

2HDMs

- Type I: One Higgs doublet couples to vector bosons, while the other couples to fermions. The first doublet is "fermiophobic" in the limit that the two Higgs doublets do not mix
- Type II: This is an "MSSM-like" model, in which one Higgs doublet couples to up-type quarks and the other to down-type quarks and charged leptons. This model is realised in the MSSM
- Lepton-specific: The Higgs bosons have the same couplings to quarks as in the Type I model and to charged leptons as in Type II
- Flipped: The Higgs bosons have the same couplings to quarks as in the Type II model and to charged leptons as in Type I
- In each of the Type II, Lepton-specific, and Flipped models, at the upper right of the $(\cos(\beta \alpha), \tan \beta)$ plane there is a narrow, curved region or "petal" of allowed parameter space with the surrounding region being excluded. These three allowed upper petals correspond respectively to an inverted sign of the coupling to down-type fermions, lepton, or the bottom quark. These couplings are measured with insufficient precision to be excluded. There is no upper petal at high $tan\beta$ in Type I as all the Yukawa couplings are identical.