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Motivation

 High-temperature-superconductors are being developed for use In rotating electric machinery

e Rotors for low speed, medium power (5~10 MW) wind turbines

 Fully-superconducting high-speed machines for airpower & shipboard generation and propulsion

e Challenging cryosystem design for high-speed, fully-superconducting machines

e High AC losses In stator

e Rotor cooling typically requires high-speed cryogen transfer coupling

Objective

 Examine unconventional cryostat configurations to reduce cryosystem demands

 Emphasize cooling options for high ac loss stator windings

Common cryostat configuration
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Feature Pro Con

Active 20 K cooling of MgB, stator,
convection cooling of 50~60 K
ReBCO rotor

\ Elimination of high-speed
rotor cryocoupling

X Need to control cryostat residual gas
pressure — balancing windage vs. heat
transfer

X High heat load from cold back iron

Torque transfer through magnetic
coupling and non-conducting
cryostat boundary

\ No hermetic shaft seals

X Large size, complex configuration,
large cantilever for rated torque

Magnetic bearings inside cryostat

\ Large reduction in rotating
friction heat load

X The load (motor weight and torque)
gets transmitted through the cryostat.
X Low radial stiffness may affect
dynamic mechanical stability

Residual gas cooling for ReBCO-based rotor

e Assume 1 m long, 0.36 m diameter rotor
 Allow a rotor heat load of 130 W (~100 W/m?)
* Use ~¥1 mTorr H, or He gas pressure in cryostat for cooling

where, conductivity, k, viscosity, v, are pressure independent

e Actively cool stator to ~ 20 K

e Simulate operation at 7000 rpm, with 1 cm gap
 Roughly 35 K temperature difference stator to rotor
* 0.01 N-m torque and 10 W loss to windage
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Stator conductor and cooling design

e ~10 um filament diameter

e ~10 mm twist pitch

Conductor based on fine-filament MgB,, strand

e ~ 10°Ohm-m matrix resistivity

Two-channel cable-in-conduit configuration

* Inner cooling channel diameter accommodates conductor
ac losses (hysteresis, coupling, transport current)

e 15~20 m conductor length per stator winding

e Strand diameter and number to fit annular cable space

Helium gas cooling
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e 20 K, 20 atm gas supplied at conductor inlet

e 15, atm pressure drop, 3 K temperature rise at outlet

e 1.7 ~ 3 W/m conductor ac loss
e 1.0~ 1.5W In Iiron teeth
e 25~30 kW In back iron

Estimated stator losses for 14 MW, 7 krpm, 6.6 kV design
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Separate cryostat - for rotor, and entire stator

Rotor cryostat
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Feature

Pro

Con

Separation of teeth from back iron

\ Removes large back iron loss
from cryogenic environment

X Complicated cryostat design and
stator assembly

Use of non-magnetic teeth between
stator windings

\ Removes iron tooth loss from
cryogenic environment

\ Provides robust mechanical
support for stator windings

X Increases magnetic field amplitude
(and hysteresis ac loss) on stator
conductor

Use of conventional room
temperature rotor bearings

\ Proven technology

X Challenging design to minimize heat
leak to rotor while maintaining high
shaft stiffness for dynamic stability
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Rotor cryostat design considerations
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Warm rotor iron

\ Faster cool down time

X Space constraint
X Complicated cryostat design

Cryogenic transfer coupling

\ Increased cooling reliability

compared to residual gas transfer

X Challenging design at this rotational
speed

Stator with individual coll cryostats
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Feature

Pro

Con

Elimination of cold stator iron
and cold stator teeth

\ Significant reduction in
cryogenic heat load

X Reduction in mechanical support for stator
windings; Large number of load cycles

(7 Billion/yr) may limit lifetime of internal
cryostat structural/thermal elements

Introduction of cold bus
between stator windings

\ Permits replacement of
individual faulty coil

X Complicated assembly and QA procedures

Introduction of adjacent phase
winding in common slots

\ Simplifies assembly
\ Maximizes use of rotor field

X Leads to significant magnetic field peaking
X Cryostat design significantly limited by the
space constraint between the teeth

Summary

e Significant challenges to the development of high-speed, HTS rotating electric machinery exist

e Relatively high conductor ac loss, compared to equivalent LTS conductors
e Carnot efficiency gain from higher temperature (20~50 K) gas cooling, offset by low coolant density

e Use of high-speed cryo-transfer coupling for rotor cooling remains challenging

e Additional cryostat topologies will be examined in effort to improve feasibility

e No significant break throughs yet
e \Working to reduce magnetic field peaking for individual stator winding cryostat configurations




