2-K Pump Down Studies at SNS

Presented at the CEC/ICMC 2015 – C3OrA

Matthew Howell SCL Systems Lead Engineer Research Accelerator Division, ORNL

July 01, 2015

Outline

- SNS CHL system
- Pump down development history
- Pump down issues
- Power factor
- Planned studies
- Future considerations
- Summary

SNS CHL

Design

- 2400 watts at 2.1 K
- 8300 watts shield cooling
- 15 g/s liquefaction load for coupler cooling
- Adequate margin for upgrades
- Provides cooling to the SCL
 - 11 medium beta cryomodules each housing three SCRF cavities
 - 12 high beta cryomodules each housing four SCRF cavities
 - 9 additional slots in linac for future upgrades

SNS 2K cold box

- Design parameters
 - 125 g/s
 - Suction pressure 0.040 bar
 - Discharge pressure ~ 1.25 bar
- Four cold compressors
 - Commercial centrifugal compressors
 - VFD controlled
 - Magnetic bearings
 - LN2 cooled motors

Pump down development history

- Pump down
 - Transitioning from 1.1 bar to 0.040 bar in the cryomodules
- System commissioned
 - 2 weeks in 2004
 - Additional 2 weeks in 2005
- Iteratively developed pump down
- Sequences developed to automate process

2K Control Sequences

Results of pump down development

- Pump down was robust and repeatable
 - 26 of 27 attempts were successful from 2007 2011
- Pressure stability of LINAC is +/- 0.1 mbar

- System was >99.5% reliable from 2007 -2011
- Pump down became a routine operation performed by the qualified CHL specialists

2-K pump down issues

- Pump down issues arose from 2012 2014
 - Only 14 of 29 pump down attempts were successful
- Three causes of unsuccessful pump downs were identified
 - VFD issues
 - Sinus filter failure
 - Unknown
- At this point, SNS requested Jlab assistance and a meeting was held in March of 2015
- During maintenance periods, pump down is scheduled 1 week prior to beam production

2-K pump down issues

- VFD issues were confirmed to cause four unsuccessful pump downs
 - Failed fan motors and failed components on the control cards
 - Air conditioning was added to VFD cabinets in 2008
- The sinus filter on VFD3 failed in June of 2014 causing four unsuccessful attempts
 - Supplied from vendor incorrectly wired

- Seven unsuccessful pump downs were attributed to unknown
- Pump data was collected in 1 second intervals
 - "VFD slip" was identified as a cause of unsuccessful pump downs
 - "VFD slip" when output frequency and actual motor speed dip while the command is held constant
- Efforts are under way to study VFD performance

Power factor measurements

- Power factor is defined as the ratio of real power flowing to the load to the apparent power in the circuit.
 - Measures how well the voltage and current are in phase
- Problems during the original pump down development led to studying CC power factor
- Original measurements displayed a 60 Hz dependency
 - Suspected dependency was the result of measuring equipment
- New data does not show 60 Hz dependency
 - Values are still quite low

Planned studies

- Path for study
 - Rewrite pump down sequence to control CC1-3 based on CC4 command
 - Localizes effects of slip to one cold compressor rather than all four
 - Evaluate VFD controls (firmware, controllers, and signal wiring)
 - Ensures all versions of VFDs, controllers, and firmware are compatible
 - Study V/f curve within VFDs
 - Adjust values to maximize torque of CCs
 - Retake power factor data
 - Confirm recent measurements
 - Collect data for at least two of the cold compressors
 - Improve detection of and possibly prevent surge

Future considerations

- Capabilities within VFDs
 - Explore new generation VFDs and their control options
 - Ability to test VFDs under load

- SNS uses a drop in differential pressure across the 2-K flow meter over time
- Improve basis for detecting and possibly preventing a trip on surge
- Improve power factor in systems with VFDs
 - Best to do thorough analysis to adopt designs even for similar applications prior to procurement of equipment

Summary

- The original pump down development produced a robust reliable process
- Issues have emerged from power factor, VFD components, sinus filter and "VFD slip"
- Plans are being developed to identify the cause of "VFD slip"
- Jlab and SNS are working collaboratively to conduct this work

