A Critical Omission in the Critical State Model

Roy Weinstein
Drew Parks
Ravi-Persad Sawh
Keith Carpenter
Kent Davey

UNIVERSITY OF HOUSTON, HOUSTON, TX 77204
Trapped field magnets (TFMs), composed of bulk HTS, are able to retain fields much higher than permanent ferromagnets. For applications, quality measures generally improve as B or B^2. Therefore, there is broad interest in applications of TFMs.

However, TFMs present added application challenges. They must be cooled below T_C and, if warmed, they must be reactivated.

For FC activation, the critical state model (CSM) predicts $B_A = B_{T,\text{max}}$. However, the field must be kept on for ~ seconds. This results in large energy requirements, detrimental to many applications.

For ZFC activation, the Critical State Model (CSM) predicts $B_A \geq 2 B_{T,\text{max}}$. However, ZFC does not require long cooling time, and a short pulse can be used, greatly reducing energy needs.

As a result, pulsed-ZFC is strongly preferred.

However, a problem remains: it is difficult to achieve $B_A \geq 2 B_{T,\text{max}}$ for high field TFMs.
• E.g., activation/re-activation is a limiting design factor in TFM motors. One optimized design used ~1/3 of the rotor space for activation coils. This caused a 33% loss of the expected power.

• An additional problem is that a pulsed-ZFC activation heats the TFM. This lowers J_C and trapped field maximum, $B_{T,max}$.

• Various world groups have spent decades trying to overcome TFM heating by high fields, in an attempt to obtain full activation.

• E.g., some have developed a 10 pulse, varying-amplitude, varying-temperature sequence in order to approach 80% of full activation.

• We have performed a series of experiments at 77 K to study details of the pulsed-activation process of TFMs.

• In an earlier experiment, on high J_C TFMs, we found a factor of 2 reduction in the required field for pulsed-ZFC activation; i.e., from $B_A \geq 2 B_{T,max}$ to $B_A \approx B_{T,max}$.
• A follow-up experiment is reported here, using TFMs with a wide range of J_C to explore for regularities of the anomalous behavior, and perhaps insight into the physics.

• As in the previous experiment, the activation field diameter is smaller than the 20 mm TFM.

• The magnet coils have Hiperco-50 cores, to obtain higher applied fields.

★ Finite element calculations, based on CSM, indicate no activation anomalies are expected due to this geometry.

• The field is approximately flat for $0 \leq r \leq 6$ mm, and decreases linearly to zero at the TFM periphery.

Schematic of Experiment
• Between the TFM and the bottom coil there is a 1.4 mm gap, into which 7 Hall probes are placed. These are placed 1.15 mm apart, spanning $1.7 < r < 8.6$ mm of the 10 mm TFM radius.

• A current pulse from capacitive discharge is used. This has a rise time of ~ 2 ms, and is ~ 30 ms long.

• For the coils used, 500 A provides $B_A \approx 3.3$ T.

• We will use the symbol B_A to represent the maximum of the applied field.

• The TFMs used were melt-textured, single grains of YBCO, 20 mm diameter X 8 mm long.
They contained pinning centers (PCs) with one of two extreme geometries: (1) Broken columnar PCs, (2) “point” PCs.

The spectrum of J_C values used in the new experiment was $5,000 \leq J_C \leq 50,000 \text{ A/cm}^2$.

The earlier experiment showing anomalous results was performed on high J_C ($\sim 50,000 \text{ A/cm}^2$) samples.

Previous to that, a similar experiment, performed on low J_C samples ($\sim 10,000 \text{ A/cm}^2$) showed good agreement with CSM.

We first consider data on trapped field, taken 2 minutes after the 30 ms activating pulse.

We compare the samples of both low and high J_C to the critical state model (CSM).
• CSM requires a smooth rise in trapped field vs. B_A. This condition is satisfied for the low J_C sample.
• The high J_C sample exhibits an anomalous giant field leap (GFL) in $B_{T,\text{max}}$.
• Next we note that CSM requires \(B_A \geq 2 \times B_{T,max} \) in order to fully activate a TFM to its maximum achievable \(B_{T,max} \).

• The low \(J_C \) samples require \(B_A \approx 4.1 \times B_{T,max} \) for full activation, thus satisfying this requirement of CSM. \((B_A \geq 2 B_{T,max}) \).

• The high \(J_C \) sample is activated to its maximum achievable trapped field when \(B_A \approx 1.6 \times B_{T,max} \), a clear violation of CSM.

• **This violation is very encouraging for applications.**

------------------------#-----------------------

• In order to probe GFL more deeply, a study of the time evolution of the HTS field was developed.

• Data were taken every 100 micro-seconds at various values of the pulse height, \(B_A \), of the activating field.

• We denote by \(B_{HTS} \) the field which has penetrated the HTS during activation.
• As B_A is increased, CSM requires B_{HTS} to increase most rapidly at large r, and more slowly as $r \to 0$.

• The low J_c sample behaves in accord with CSM.

• The high J_c sample behaves in accord with CSM, until (1) the pulse is at its peak value, and (2) $B_A \geq B_{T,max}$. Then, in $\sim 500 \, \mu s$, the situation rapidly reverses, in contradiction to CSM.
Critical State Model (CSM) Compared to Experiment

• The high J_C samples violate CSM in the following ways:

 • Prior to GFL the values of trapped field, $B_T(r)$, are suppressed relative to CSM by a factor of ~6.

 • After GFL, B_T is enhanced. I.e., full activation is achieved at $B_A = B_{T,max}$. CSM requires $B_A \geq 2 B_{T,max}$.

 • CSM requires smooth increase of HTS field vs. B_A. Instead, B_T leaps when the induced $\bar{E} = 0$, $B_A \approx B_{T,max}$.

 • High J_C and low J_C samples behave differently. CSM makes no J_C distinction.

 • CSM has B_T rise at same rate as B_A. Instead, B_T leap occurs very fast (~500 µs). This is 4x faster than B_A.

$E = 0$
The New Experiment

• We planned several experiments to look for regularities in the GFL phenomenon. The first was to study GFL vs. J_C.

• We produced samples with a variety of J_C using refined Y211, nuclear recoil, and nuclear fission to make PCs.

• Trapped field was separately measured for each sample by field cooling (FC) in a magnet with $R_{\text{mag}} > R_{\text{TFM radius}}$.

• $B_{T,\text{max}}$ of each sample was measured on an x,y scanner using a Hall probe.

• From these measurements, J_C was calculated.

• We did several experiments to check that the equipment was properly functioning.
• E.g., the measured FC values of $B_{T,max}$ were compared to the pulsed-ZFC measurements of $B_{T,max}$.

• Good agreement with a linear relationship was found. Extrapolation to zero reflects the effect of the Hiperco-50 core.
- We next used data on trapped field at $t = 2 \text{ min.}$ to measure where the leap started ($= B_{\text{Thresh}}$) and where the leap ended, ($= B_{\text{End of leap}}$).
Without recourse to any theory we see:

- The threshold is a decreasing function of J_C.
- The end-of-leap is an increasing function of J_C.
- The leap phenomenon increases with J_C.
- The magnitude of the leap grows to ~2 T at $J_C \sim 50,000 \text{ A/cm}^2$.
- Both point PCs and columnar PCs show the same general GFL behavior.
- Therefore, at least to first order, GFL is independent of pinning center geometry.
• We next considered the data on $B_A/B_{T,\text{max}}$, corrected to the TFM surface.

• Note that for low J_C samples, $B_A/B_{T,\text{max}} \approx 3.2$, a result in agreement with CSM.

• Note that for high J_C samples, $B_A/B_{T,\text{max}} \approx 1.0 \pm 10\%$, a result incompatible with CSM.

★ The special point at 5000 A/cm2 is a finite element calculation based on CSM.
• What is the physics causing GFL?

• We **speculated** with the first GFL observation, that the very large Lorentz force, \(F_L \propto J_C \times B_{HTS} \) may be moving the fluxoids away from the locations required for optimum diamagnetic shielding.

• In this new experiment we can measure \(B_{HTS} \) just prior to the leap (= \(B_{Thresh} \)), and calculate \(J_C \times B_{thresh} \propto F_{L,thresh} \).

• We use the time dependent data to find \(B_{Thresh} \) so that we do not have to correct for unknown creep rate.

• We have data on seven points in r, just prior to GFL. We fit 6 of these with 2 straight lines in order to find the peak value of \(B_{Thresh} \).

• Typical fits are shown in the next slide.

• We use the measured FC value of \(B_{T,max} \) to represent \(J_C \).
• Examples of determinations of B_{thresh} for samples with J_C:
 (a) 14.1 kA/cm2, PCs = Y211
 (b) 36.6 kA/cm2, PCs = n-recoil
 (c) 41.2 kA/cm2, PCs = U/n

• Falling line on right is caused by decreasing values of $B_A(r)$.
• Using the fitted values of B_{Thresh} and the FC measurements of $B_{T,\text{max}}$ as a measure of J_C, we obtain values of $B_{\text{Thresh}} \times B_{T,\text{max},\text{FC}} \propto B_{\text{Thresh}} \times J_C \propto F_{L,\text{thresh}}$ (the Lorentz force when the leap occurs).
Our Opinions About the Physics of GFL

• We consider the most revealing behavior of the experimental results to be the suppression of B_{HTS} prior to the leap.

• But what is it that limits the increase of penetrated field?

• We postulate that rapid flux leakage causes the limitation.

• We postulate that when $\vec{E} \rightarrow 0$ (i.e., at the peak of the B_A pulse) the Lorentz force frees fluxoids from their shielding location.

• (Clearly, however, F_L may be a cause or a consequence.)

• The postulated fluxoid movement is similar to creep, but is much faster. We describe it as a “fluxoid cascade.”

• The flux loss limits pre-leap B_T to anomalously low values.

• If F_L is indeed causal, we cannot say whether F_L or its derivative is the cause because sample geometry is constant.
• In particular, note that current reverses at B_{Thresh}, and therefore F_L reverses by 180°.

• Thus, at B_{Thresh}, $\Delta F = 2 F_L$. This discontinuity in F_L occurs at the peak value of $B_{\text{HTS}} (= B_{\text{Thresh}})$.

• We favor the large stress due to ΔF_L as the cause of the fluxoid cascade.

• While the activating field is still on, the fluxoids lost in the cascade are (partially) replaced by fluxoids introduced by B_A.

• If only free fluxoids were involved we would expect a rapid increase in $B_{T,max}$ when the pulse begins to decrease, and \vec{E} reverses sign.

• However, from our postulates, we do not see a reason that the GFL is delayed until $B_A = B_{T,max}$.

• Hence, at this point, our explanation is incomplete.
Closing Comments

• CSM was said to postulate:
 – Electric field causes maximum J to flow.
 – Ampere’s Law is valid.

• We believe that a third postulate was implied: fluxoids remain in place when $\vec{E} = 0$.

• We are not alone in noting that CSM requires fluxoid stability.

• In 1962, when C.P. Bean was developing CSM, P.W. Anderson was investigating “creep” [the decrease of B_T with time].

• The Anderson model of creep postulates that thermally activated fluxoids escape from their pinning potential. The fluxoids then move off “guided by F_L."

• Anderson, in his seminal paper on flux creep noted, “We have obviously predicted that there is no precise critical state.”
Thus, while CSM is a remarkably useful theoretical aid, we must view it as a very convenient fiction. It has been a useful approximation, because the creep correction is so small.

Based upon our experiments to date, we postulate that $B_T(r)$ is suppressed by a fluxoid cascade caused by increasing F_L.

GFL occurs uniquely at $B_A \approx B_{T,max}$, and $\vec{E} \approx 0$. When it does occur, the free fluxoids in the cascade permit it to happen quickly.

However, a field leap would then be expected whenever the induced \vec{E} field switches direction, independent of B_A.

Instead, the leap only occurs when B_A is large enough to fully activate the TFM.

Therefore our present model is, at best, incomplete.

Our experiments continue in the hope of resolving this and other very significant anomalies.