Development of cooling system for 66/6.9kV-20MVA REBCO superconducting Poster transformers with Ne turbo-Brayton refrigerator and subcooled liquid nitrogen

C1PoA-03

M Iwakuma¹, K Adachi¹, K Yun¹, K Yoshida¹, S Sato¹, Y Suzuki², T Umeno², M Konno³, H Hayashi⁴, T Eguchi⁴, T Izumi⁵, Y Shiohara⁵

¹ Kyushu University, Fukuoka 819-0395, Japan, ² Taiyo Nippon Sanso Co., Tokyo 142-8558, Japan, ³ Fuji Electric Co. Ltd., Kawasaki 210-9530, Japan, ⁴ Kyushu Electric Power Co. Inc., Fukuoka 815-8250, Japan, ⁵ ISTEC, Kawasaki 213-0012, Japan

Introduction

We developed a turbo-Brayton refrigerator with Ne gas as a working fluid for a 3ϕ -66/6.9kV-2MVA superconducting transformer with coated conductors which was bath-cooled with subcooled LN2. The two-stage compressor and expansion turbine had non-contact magnetic bearings for a long maintenance interval. In the future, we intend to directly install heat exchanger into the GFRP cryostat of a transformer and make a heat exchange between the working fluid gas and subcooled LN₂.

In this paper we investigate the behaviour of subcooled ${\rm LN_2}$ in a test cryostat, in which heater coils were arranged side by side with a flat plate finned-tube heat exchanger.

Summary

We built a test system to investigate the behaviour of subcooled LN_2 in a cryostat, in which a flat plate finned-tube heat exchanger for cooing and heater coils were arranged side by side in the LN_2 bath.

A He turbo-Brayton refrigerator was connected with the heat exchanger and He gas as a working fluid was introduced into the copper pipe of the heat exchanger.

The pressure at the surface of LN_2 was atmospheric one. Just under the LN_2 surface, a stationary layer of LN_2 was created over the depth of 8 cm and temperature dropped from 77 K to 70 K with depth while, in the lower level than that, a natural convection current of LN_2 was formed and temperature was almost uniform at 66 K over around 1 m depth.

Construction of Test Cooling System

A turbo-Brayton refrigerator with neon gas as a working fluid

expansion turbine and a two-stage turbine compressor with

and a cooling capacity of 2kW at 65K was developed. An

non-contact magnetic bearings were adopted.

a thickness of 0.4 mm were attached by silver soldering.

3) Manganin heater wire was wound on a GFRP bobbin into a single-layer

solenoid with a diameter of 250 mm and a height of 100 mm and then the

Experiment

LN₂ at 77 K was first transferred into the test cryostat.
500 liter of LN₂ was held.
Surface level of LN₂ was 1.32 m.

2) By operating the He turbo-Brayton refrigerator and flowing He gas into the copper pipe of the heat exchanger, LN₂ was cooled down to a subcooled state.

Preessure at the surface was atmospheric one.

- 3) Temperature of the He gas at the inlet of the heat exchanger was controlled so that the temperature of LN₂ did not decrease to less than 63.3 K.
- 4) By overcooling, freezing LN₂ clung between the fins of the heat exchanger.
- 5) By heating with heater coils, temperatures started to rise up. When all the heater coils generated heat evenly and the total heat power was less than 1 kW, no bubble was observed. In that case, a rising current of LN₂ in the cooling channel surrounded by a glass pipe became visible even if no bubble appeared.
- 6) When the uppermost and lowermost coils generated heat power of 200 W per each, bubbles were produced. However bubbles rose up by several cm from the top of the heater coils and then re-condensed and disappeared by cooling by circumambient subcooled LN₂.
- 7) Just under the LN_2 surface, a stationary layer of LN_2 was created over the depth of 8 cm and temperature dropped from 77 K to 70 K with depth while, in the lower level than that, a natural convection current of LN_2 was formed and temperature was almost uniform at 66 K over around 1 m depth. The boundary plane was visible.

