FROM RESEARCH TO INDUSTRY

EXPERIMENTAL STUDY OF STABILITY AND TRANSIENTS IN A HORIZONTALLY HEATED BOILING HELIUM THERMOSYPHON

H. Furci, A. Four, B. Baudouy Service d'Accélérateurs, Cryogénie et Magnétisme IRFU, DSM

CEA de Saclay

CRYOGENICS ENGINEERING CONFERENCE

JUNE 28TH TO JULY 3RD 2015, TUCSON, ARIZONA, USA

MOTIVATION

Helium natural circulation loops are used for cooling large superconducting magnets.

Within the R&D program for the R3B-GLAD spectrometer, horizontally heated loops started beeing studied at low power. Interesting dynamic behavior was observed.

R3B-GLAD cooling system

We now perform **experiments** on a big size helium natural circulation facility

- To explore other existing
 thermalhydraulic regimes during
 steady and transient power
 solicitation;
- To identify eventual heat transfer deterioration phenomena;
- To determine ways of **mitigating** harmful effects.

EXPERIMENTAL SET-UP

EXPERIMENTAL SET-UP

STEADY-STATE POWER SOLICITATION

Power is increased gradually, at steps (quasi-steady evolution)

Stability limits

Configuration	NHHL (m)	Lower limit (W)	Upper limit (W)
0-3	0.360(10)	1.2(4)	78(3)
0-2	1.895(10)	2.8(4)	71(2)
0-1	3.315(10)	3.7(2)	60(1)

Stable behavior is only observed between lower and upper stability limits. The stability limits are affected by the heating geometry.

STEADY-STATE POWER SOLICITATION

The unstable behavior at low power

- Exit quality strongly influential on density.
- Low mass flow rate → long transit time.
- Important transport lag on riser density.

The unstable behavior at high power

- Equilibrium \dot{m} diminishes with q.
- Friction Acceleration → immediate response
- *Gravity (density)* → transport lag

STEADY-STATE POWER SOLICITATION

During the high power instability

- initially linear (exp-sin)
- saturates to a periodic oscillation

The attractor is a **Limit Cycle**.

No quasi-periodicity, no chaos.

STEP-PULSED POWER SOLICITATION

The system response to step heat load pulses was measured. In general, **2 stages** are observed:

- Static inlet velocity stage: no buoyant force, two-phase expansion in the horizontal section, stratification.
- **Buoyant force stage:** vapor reaches the riser, positive inlet velocity, homogenization of flow.

At low power (boiling crisis is not expected at all) high temperature excursions can happen.

STEP-PULSED POWER SOLICITATION

Applying of **power on the riser**.

Low power-high temperature excursions are very sensitive to small mass flow rates imposed externally.

- $v_i \neq 0$
- → delays heat transfer deterioration
- → advances the initiation of the buoyant force

→ Mitigation of the excursion

CONCLUSION

Steady heat load

- Horizontally heated helium natural circulation loops can be unstable at sufficently low or high driving power.
- The **stability power range** decrease as the **NHHL** downstream the heated section increases (transport lag destabilizes).
- The unstable dynamics is attracted by limit cycles.

Step-pulsed heat load

- Transients after a step-pulsed heat load have two stages:
 - static inlet MFR stage
 - buoyant stage
- High temperature excursions (a few K) at very low heat flux (even <100 W/m²) can take place during the first stage if initially the system is at rest, especially for long NHHL.
- Initially established flow and short NHHL can inhibit this transient feature, which gives us hints of how to protect devices from this undesired effect.

FROM RESEARCH TO INDUSTRY

Thank you for your attention!

COMMISSARIAT À L'ÉNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVES DSM/IRFU/SACM

CENTRE DE SACLAY, 91191 GIF-SUR-YVETTE CEDEX

Etablissement public à caractère industriel et commercial RCS paris B 775 685 019