maximum thickness of 50 mm is installed.

To estimate the irradiation effects, ensuring the production target of 4.5 by 16.5 cm² proton beam, energy deposition and displacement per atom (DPA) are calculated using the Fermi code, HTS without magnetic field. DPA is sufficient to induce displacement damage, displacement degradation of radiation by irradiation of particles (protons, neutrons, etc.) 2D following results are simulated with SRIM, MCNP and hydrodynamic model, and author uses REBUS 4D Recoil for the works under irradiation under 2.5 MeV. Furthermore, the cut off energy of all particles are limited to 0.5 MeV.

The field cooling coil is considered as 10 mm thick, 20 mm diameter copper rod. The coil is exposed as three thin rings and one end ring in between each ring is the same size. Thin copper is attached to circulate the DPA of the aluminium. The simulation is assumed on the production scenario discussed above, the RRR of 50 is used for the thermal computation.

To estimate the irradiation effects, ensuring the production target of 4.5 by 16.5 cm² proton beam, energy deposition and displacement per atom (DPA) are calculated using the Fermi code, HTS without magnetic field. DPA is sufficient to induce displacement damage, displacement degradation of radiation by irradiation of particles (protons, neutrons, etc.) 2D following results are simulated with SRIM, MCNP and hydrodynamic model, and author uses REBUS 4D Recoil for the works under irradiation under 2.5 MeV. Furthermore, the cut off energy of all particles are limited to 0.5 MeV.

The field cooling coil is considered as 10 mm thick, 20 mm diameter copper rod. The coil is exposed as three thin rings and one end ring in between each ring is the same size. Thin copper is attached to circulate the DPA of the aluminium. The simulation is assumed on the production scenario discussed above, the RRR of 50 is used for the thermal computation.