DESIGN AND FABRICATION OF A CRYOSTAT FOR LOW TEMPERATURE MECHANICAL TESTING FOR THE MECHANICAL AND MATERIAL'S ENGINEERING GROUP AT CERN

I. Aviles Santillana CERN, University Carlos III of Madrid Presented by: S.A.E. Langeslag

Universidad Carlos III de Madrid

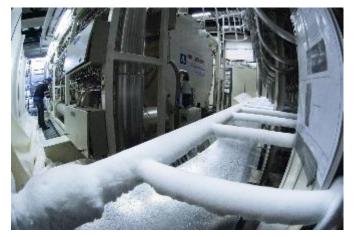

Concept and Design

Validation and Results

Conclusion

ENGINEERIN

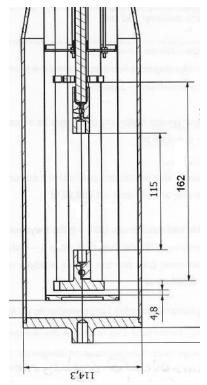
EN



Superconducting magnets

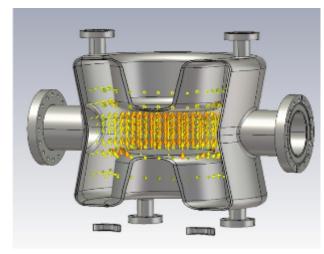
Superconducting RF cavities

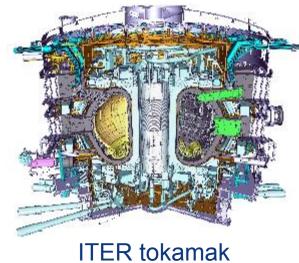
Ancillary equipment for particle detectors



Cryogenic supply system

- Mechanical characterization of materials at low temperatures has always been of paramount importance at CERN
- Four 18 kN cryogenic tensile systems have served for countless tests with sub-size samples

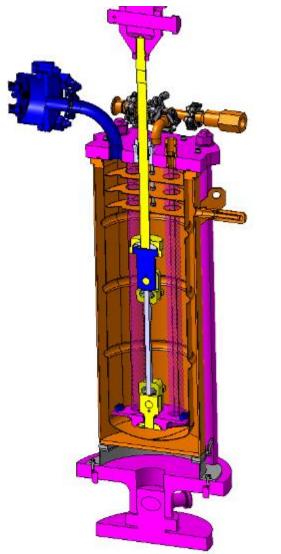




• Increasing demand of mechanical characterization at cryogenic temperatures

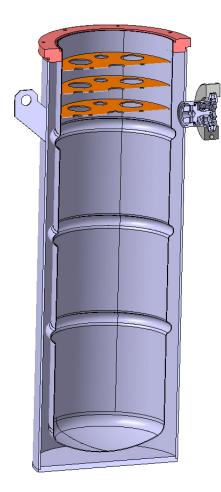
Crab cavities (HL-LHC)

11 T project



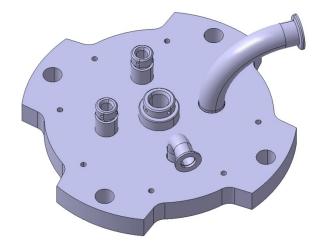
EN

Concept & Design

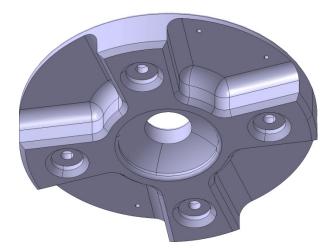

- Orange: Thermal components
- Pink: Structural components
- Yellow: Load train
- Blue: Instrumentation

ENGINEERIN DEPARTMEN

Thermal components



- Dewar:
 - 0.8 mm inner wall thickness
 - Double walled vessel
 - 20 25 minutes of filling
 - ~ 20 liters / test consumption


- Thermal screens:
 - 3 ETP copper thermal screens
 - 1.5 mm thickness each

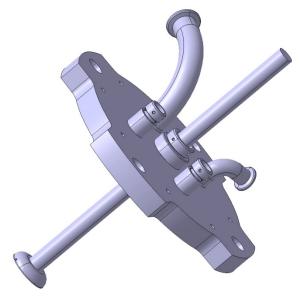
Structural components

- Top flange:
 - AISI 316 LN (1.4429)
 - CERN technical specification
 - 27 mm thickness
 - Sliding rubber o-ring seal
 - 50 N/m torque for fixation

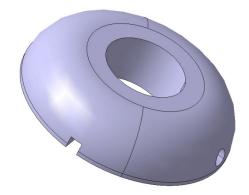


- Inner bottom plate:
 - Titanium base alloy (Ti6Al4V)
 - Design optimized to reduce mass without endangering mechanical stability
 - Hosts lower ball joint

Structural components



- Internal columns:
 - 4 column system
 - AISI 316 L (1.4404)
 - Hollow structure
 - 2.6 mm wall thickness, 30 mm outer diameter
 - Welded ring for perpendicularity
- Outer rods:
 - 36NiCrMo16 (1.6773)
 - Bulk 28 mm diameter
 - Length accuracy to guarantee
 parallelism
- Bottom flange:
 - EN S355J0 steel (1.0553)
 - Generic pin connection to UTS



Load train

- Pulling rod:
 - Grade 5 titanium (Ti6Al4V)
 - Connected to upper ball joint
 - Connected to top UTS adapter
 - Ra < 1.6 µm

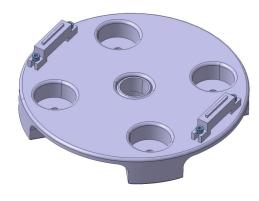
- Ball joints:
 - To correct misalignments
 - Reduce bending between two ball joints
 - Ball joint and its counterpart are identical

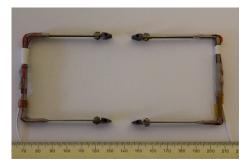
Load train

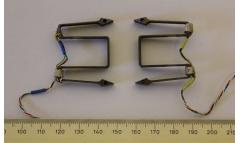
- Sample holders:
 - AISI 316 L (1.4404)
 - Two identical halves
 - Pin connection, allows for rotation
 - Connected to lower ball joint coupler
 - Adapters for different thicknesses
 - Collars to avoid separation

ENGINEERIN: DEPARTMEN

Load train

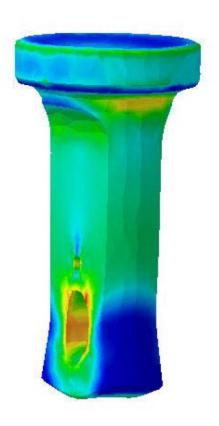

- Sample holders:
 - AISI 316 L (1.4404)
 - Two identical halves
 - Pin connection, allows for rotation
 - Connected to lower ball joint coupler
 - Adapters for different thicknesses
 - Collars to avoid separation





I.A.

Instrumentation



- Connectors:
 - Four sets of 3M® connectors
 - One for load cell and one for extensometers
 - 2 additional available of 12 pins each
 - Instrumentation feedthrough via 4 Fischer® connections
 - Optical connections for a wide variety of sensor attachments
- Extensometers:
 - Strain gages mounted to bending beam element
 - Two types: C-shape and W-shape
 - Calibrated by the supplier and in-house

Instrumentation

Von Mises stress (nodal values).2

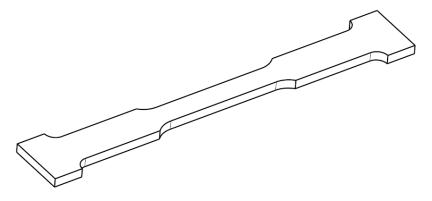
MPa

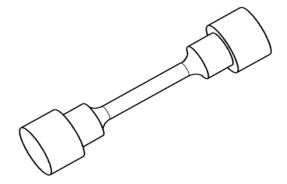
448

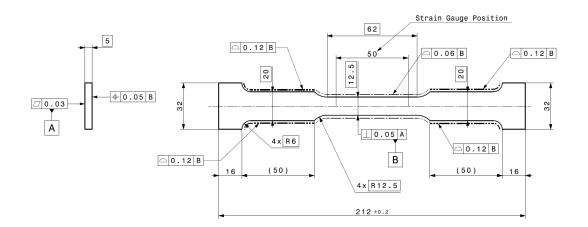
404
359
315
270
226
181
137
92.1
47.7
3,17
On Boundary

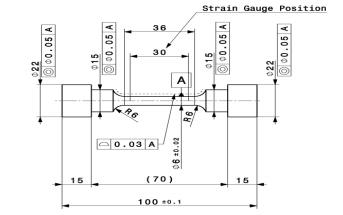
- Internal load cell:
 - Adjacent to the specimen
 - Ti5Al2.5Sn
 - Wheatstone full bridge configuration
 - FEA to validate conditions
 - Calibration up to 80 kN
 - Class 1 following ISO 6892

Results and Validation

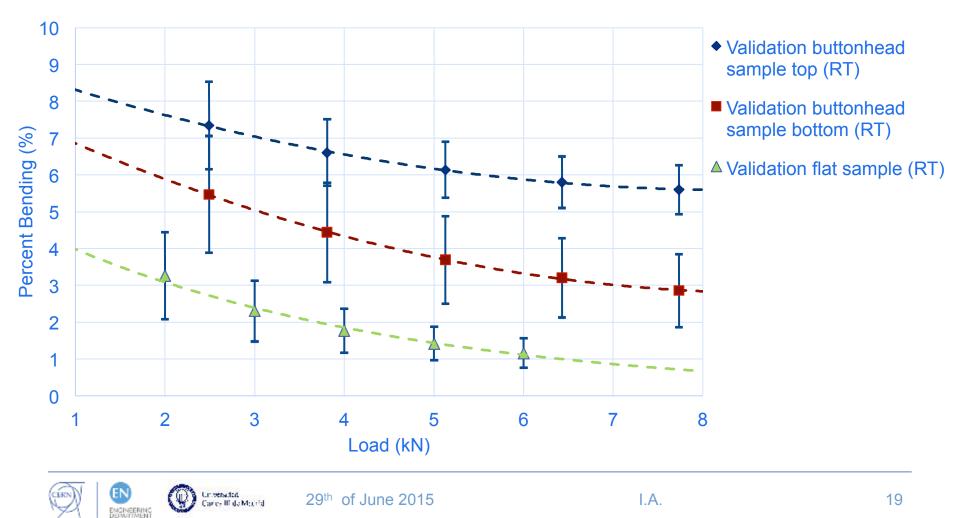



ΕN



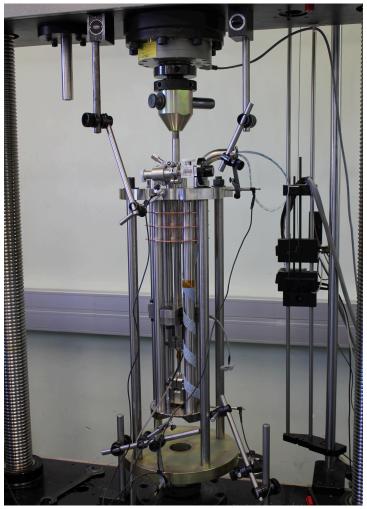

Tensile specimens

Flat and buttonhead specimens are fabricated according to ASTM E1450 and ISO 6892



Validation for flat and buttonhead samples

First results


• Preliminary results for selected uniaxial tensile tests at 4 K

Material	Rp0.2 (MPa)	UTS (MPa)	A (%)
OFE - copper	418	522	47
INERMET®180	Failure in the elastic region	1048	0.37

Results

Setup for very first validation test, Inner structure exposed

Current cryogenic tensile system, installed for 4 K measurements

Conclusion

- A 100 kN cryogenic mechanical testing system has been designed, fabricated and commissioned to perform uniaxial tensile tests at temperatures ranging from 300 K down to 4 K.
- The developed system is able to test different standard size specimens, which gives the opportunity to assess material properties of flat and round products at cryogenic temperatures.
- All the different solutions which have been implemented have been comprehensively analysed, presented and discussed in detail, including geometries, tolerances and materials.
- The instrumentation of the device, which is a key aspect of the design, has been successfully calibrated and installed. The sensors and connectors which are chosen are thoroughly described and discussed.
- An exhaustive validation of the cryostat has been carried out according to the international standards in play. The deviation from uniaxial stress is confined to less than 10 %, even when extrapolating at low loads.
- Preliminary results at 4 K for a few selected materials are shown. The results obtained are consistent to what it can be found in literature for these materials in a similar temper state.

Universidad.

Thank you for your attention