Experience with cryogenic operation of Accelerator Module Test Facility during testing of one third of XFEL cryomodules

V. Anashin3, L. Belova3, Y. Bozhko1, K. Escherich1, B. Petersen1, S. Putselyk1, E. Pyata3, T. Schnautz1, J. Swierblewski2, A. Zhirnov1

1Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
2Institute of Nuclear Physics (INP), Polish Academy of Sciences (PAS), 31-342 Krakow, Poland
3Budker Institute of Nuclear Physics (BINP), Russian Academy of Science, Novosibirsk, 630090, Russia

\textit{presented by Anatoly Zhirnov, DESY, MKS}

With a huge appreciation to colleagues from INP-PAS (Poland), WUT (Poland), BINP (Russia) and other DESY groups for joint fruitful work during AMTF test activity
- Complete cold performance tests of all XFEL cryomodules before tunnel installation (RF measurements, vacuum check, cryo-losses)
 103 cryomodules, rate: 1 cryomodule/week

- Cold RF tests of all XFEL superconducting cavities before cryomodule assembly
 824 cavities, rate: 6 cavities/week

- Cold tests of all superconducting magnet packages before cryomodule assembly
 103 magnets, rate: 1 magnet/week
AMTF Hall – Cavities and Cryomodules

- Vertical Cryostat
- Radiation protection shielding
- Cavity preparation area
- Unloading of the cryomodule after transport
- Cryomodule preparation area
- XATB – module inside radiation protection shielding
Red = Wroclaw University of Technology+Kriosystem, Poland (in-kind)

Blue = DESY MKS acting for XFEL company (no in-kind!)
-> DeMaCo, Netherlands

Green= Budker Institute of Nuclear Physics, Russia (in-kind)
Manufacturer: Oerlikon Leybold

2 sets of compressors for 2K operation at AMTF (2 x 20 g/s helium at 20 mbar)

1 set = 12 x parallel pump stations
(WS 2001 RUVAC roots vacuum pump + SOGEVAC SV750B rotary vane vacuum pump)

– simple, modular, redundant

In average: about 8000 h operation (status June 2015)
AMTF Vertical Cryostats

SPEC DESY
April 2009
Design & Construction
WUT&Kriosystem
Delivery & installation:
July 2012 – April 2013

Cavity Frame
Design:
DESY FLA
6 inserts for AMTF

 Courtesy of J.Schaffran
First test stand delivered & installed May 2013 (cold commissioning July 2013)
Cold commissioning of 3rd test stand December 2013

2 cryostat adapters for the test of single dressed cavities at AMTF
DESY is acting for XFEL company

Manufacturer: DeMaCO

Sub-Cooler Box XASB
Valve Box XAVB
L Helium Dewar XAST

Wessington Cryogenics Ltd, UK
Supplied by HERA helium refrigerator.

- 33 g/s of LHe and cooling capacities of about 3 kW at 40/80K, 0.5 kW at 4.5K.
- Modular structure - independent operation of test stands from each other.
- Buffering of extra liquefaction in 10000 ltr liquid helium storage dewar (XAST).
- Missing of air condensation on cryogenic valves during exchange of modules or cavities.
- Capacity limits – return gas peak, screw compressor capacity during cool down/warm-up, 2 dynamic procedures in parallel.

Cool down and Warm up

XATC1, XATC2
- Manual pump and purge
- Cool-down to 4K, liquid helium transfer and warm-up in automatic mode
- Manual pump-down to 2K

XATB1, XATB2, XATB3
- Manual pump and purge
- Mainly automatically warm-up,
- Cool-down partially in automatic mode
Serial tests with installation work and commissioning at the same time

Mixing of warm & cold gas for controlled cool-down/warm up

LHe level measurements affected by electrical heaters

2K supply JT-valve in module test stand 3 (XATB3) out of shape

Misalignment of process tube flanges (feed-caps) -> install adapters

“Digital ” operation of valve positioners -> change type of positioners

Some cold and warm valves have leakages over the seats as well as jerk movement of valve stems

Bad thermal contacts of some electrical heaters -> use of other heater type

Liquid level measurements -> increase current

Mix-up of thermometers (calibration) -> try to sort, some re-calibration
All superconducting magnets are tested!

In total, 720 Cavity Tests were performed on vertical cryostats.

Specified test rate of accelerator module is reached!

Total heat load (static+dynamic) in line with budget.

Near all results above XFEL specification:

- accelerating gradient 23.6 MV/m
- cavity quality factor $Q_0 = 10^{10}$ at 23.6 MV/m
Some preliminary conclusions

- Deliveries & installation of XATCs, XASB, XAVB, XATL were “just-in-time“ for start-up of cavity production
- Deliveries & installation of XATBs were “just-in-time“ for start-up of cryomodule production
- No dedicated debugging of cryo-supply and other systems
- XATCs design capacities demonstrated
- Complexity of XATBs commissioning underestimated
- General effort for installation & commissioning underestimated
- 1 cryomodule test/week is reached (further ramping-up rate is under investigation)
- So far: in budget and almost “in time“ (not “on schedule“)
Thank you for your attention!