Performance test of the cryogenic cooling system for the superconducting fault current limiter

Yong-Ju Hong¹, Sehwan In¹, Hankil Yeom¹, Heesun Kim², Hye-Rim Kim²

1 : Korea Institute of Machinery & Materials, Yuseong-gu, Daejeon, 305-343, Korea
2 : KEPCO Research Institute, Yuseong-gu, Daejeon, 305-343, Korea

Introduction

Background
- SFCL is an electric power device which limits fault currents immediately in a power grid.
- Cryogenic cooling system are an essential prerequisite to safely operate HTS modules.
- When fault currents occurs, the heat is generated in a short time but the amount is very large.
- Liquid cooling using subcooled LN2 are widely used for the cooling of SFCL.
- Critical current of HTS modules is increased at low temperature, and an elevated pressure can suppress the generation of bubbles.
- Also, the LN2 in subcooled temperature and elevated pressure can evade the cavitation in cooling system.

Objectives
- In Korea, due to higher demand in a transmission level, 154 kV/ 2 kA SFCL have been developed.
- Verification of the design of the cooling system and cool-down process

Cooling system configuration

<table>
<thead>
<tr>
<th>Cooling sys. component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main cryostat (MC)</td>
<td>71 K (500 kPa), Heat load < 800 W</td>
</tr>
<tr>
<td>Coolant</td>
<td>Subcooled LN2 (500 kPa, 71K, 23 Ton)</td>
</tr>
<tr>
<td>Pressure builder (PB)</td>
<td>Automatic pressure control (500 kPa), Heater (2 kW)</td>
</tr>
<tr>
<td>Subcooling cryostat (SC)</td>
<td>Hydrocyclone (50μm) / Heat exchanger (4 kW)</td>
</tr>
<tr>
<td>Cryocooler</td>
<td>Stirling cryocooler (RL type ; 4.0 kW@77 K/ 48 kWmax)</td>
</tr>
</tbody>
</table>

Performance of the cooling system for 154 kV SFCL

Summary
- In this study, we tested the performance of the cooling system for the prototype single phase 154 kV SFCL, which consist of a stirling cryocooler, a SC, a PB and a MC for the SFCL module, to verify the design of the cooling system and the cool-down procedure.
- Cooling processes are composed of a purging process, a cleaning and precocooling process, a LN2 filling process, a subcooling process and a pressurizing process.
- The cooling system and process are designed to ensure the normal operation condition of 71 K, 500 kPa.
- Temperature variations of the LN2 in the MC are less than 1 K in normal operation.

This work was supported by the Power Generation and Electricity Delivery of KETEP & MOTIE (No. 2011T100200043)