Presentation ID: C2OrD-02

Cryogenic Engineering Centre Indian Institute of Technology Kharagpur Kharagpur, India - 721302

CFD ANALYSIS OF STRAIGHT AND FLARED VORTEX TUBE

AMAN KUMAR DHILLON AND SYAMALENDU S. BANDYOPADHYAY

SEPARATION SCIENCE LAB

Introduction

- Approach toward the problem
- CFD Modelling
- Validation of Model
- Temperature separation in VTs
- Energy Separation in Both VTs
- Performance Characteristics of VTs

Conclusions

References

Introduction

Vortex Tube (VT) is a simple and compact device

Used as heat pump as well as refrigeration device

- > It is extensively used in industries for small scale cooling or heating application
 - Cooling of cutting tools
 - Cooling and dehumidification of food products
 - Electrical cabinets cooling

Counterflow vortex tube with flared hot tube (Crocker et al. 2003)

Approach Toward the Problem

- > VT has a simple geometry and complex flow
 - > Difficult to understand clearly the energy separation phenomenon
- Ranque (1933) proposed that expansion and compression are the reasons for energy separation in VT
- The effect of inner friction is also an important factor with expansion and compression for energy separation (Hilsch, 1947)
- Aljuwayhel et al. (2004) and Behara et al. (2005) evaluated the energy transfer to explain the temperature
- Evaluation of heat and work transfer in both straight and flared VT was done to compare the performance of VTs using CFD based software

CFD Modelling

- CFD based Ansys Fluent 14.0 software was used
- Standard k-ε Turbulence model considering R-K real gas equation of state was used

Divergence angle of Flared (Divergent) VT is 2°

To remove error due to coarseness, 160,000 number of CV cells are used for mesh generation

Validation of Model

Validate with experimental data available in literature

Maximum deviation from experimental results is under 5 %

Temperature Separation in VTs

Energy Transfer in Both VTs

Performance Characteristics of VTs

STRAIGHT VT

FLARED VT

Maximum COP as Refrigeration device is 0.110

Maximum COP as Heat pump is 0.104

Maximum Efficiency is 21.43 %

Maximum COP as Refrigeration device is 0.100

Maximum COP as Heat pump is 0.093

Maximum Efficiency is 22.02 %

Conclusions

- > The tangential shear work has an important contribution in energy separation. The heat is transferred from cold fluid to hot fluid.
- Flared tube performs better than a straight tube for a hot mass fraction above 0.5.
- Energy transfer along the axial direction in flared VT is more than straight VT.
- Maximum COP as refrigerator and heat pump is observed to be 0.11 and 0.10, respectively in a straight VT and maximum efficiency is observed to be 22.02% in a flared VT.

Q&A

Thank you

PRESENTATION ID: C2ORD-02

- G.J. Ranque, Le Journal de Physique et le Radium (Paris) 4, 112-114 (1933).
- R. Hilsch, *Rev. of scientific instruments* 18, 108-113 (1947).
- A.I. Gulyaev, J. of Engg. Physics 10, 193-195 (1966).
- B.A. Shannak, *Heat and Mass Transfer* 40, 779-785 (2004).
- N.F. Aljuwayhel, G.F. Nellis, S.A. Klein, Int. J. of Refrigeration 28, 442-450 (2005).
- Upendra Behara, P.J. Paul, K. Dinesh, S. Jacob, Int. J. of Heat and Mass Transfer 51, 6077-6089 (2008).
- T. Dutta, K.P. Sinhamapatra, S.S. Bandyopadhyay, Int. J. of Refrigeration 33, 783-792 (2010).
- T. Dutta, K.P. Sinhamapatra, S.S. Bandyopadhyay, Int. J. of Refrigeration 34, 2118-2128 (2011).
- > Ansys Fluent 14.0: Theory Guide, Ansys Inc., Canonsburg, PA, USA (2011).
- H. Pouraria, M. R. Zangooee, *Energy Procedia* 14, 1554-1559 (2012).
- A. M. Crocker, S. M. White, Frank Bremer, and Jr. A Space. In Joint Propulsion Conference & Exhibit, 1-12. Huntsville, Alabama: American Institute of Aeronautics and Astronautics (2003).

Important Formulas

Sensible heat transfer rate per unit length:

$$\frac{\delta q}{\delta z} = 6 \times \int_0^{\pi/6} -K_{eff} \cdot \frac{\partial T_s}{\partial r} \cdot r \cdot d\theta$$

Tangential shear work transfer rate per unit length:

$$\frac{\delta w_{\theta}}{\delta z} = 6 \times \int_{0}^{\pi/6} -\mu_{eff} \cdot \left(\frac{\partial w}{\partial r} - \frac{w}{r}\right) \cdot w \cdot r \cdot d\theta$$

Axial shear work transfer rate per unit length:

$$\frac{\delta w_z}{\delta z} = 6 \times \int_0^{\pi/6} -\mu_{eff} \cdot \frac{\partial u}{\partial r} \cdot u \cdot r \cdot d\theta$$

COP as Refrigeration device

$$COP_{rf} = \frac{\gamma}{\gamma - 1} \frac{(1 - m_h)(T_i - T_c)}{T_i \ln \frac{P_i}{P_c}}$$

COP as Heat Pump

$$COP_{hp} = \frac{\gamma}{\gamma - 1} \frac{m_h(T_h - T_i)}{T_i \ln \frac{P_i}{P_c}}$$

Efficiency

$$\eta_{is} = \frac{T_i - T_c}{T_i (1 - (P_a/P_i)^{(\frac{\gamma - 1}{\gamma})})}$$