

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Forced two-phase helium cooling scheme for Mu2e Transport Solenoid

Greg Tatkowski Daniel Evbota Robert Sanders

Sergey Cheban Mauricio Lopes Richard Schmitt Nandhini Dhanaraj Thomas Nicol Erik Voirin

Presented at CEC-ICMC 2015 July 1, 2015

TS layout

TS-u with vacuum shield removed

Generalized helium flow schematic for Mu2e

Greg Tatkowski | Forced Two-Phase Helium Cooling Scheme for Mu2e Transport Solenoid

Greg Tatkowski | Forced Two-Phase Helium Cooling Scheme for Mu2e Transport Solenoid 6

TS-u He cooling lines

- $\Delta Z \sim 5$ m from feedbox to solenoids
- Transfer line length from feedboxes ~25 m
- TS-u nearly identical to TS-d
 - 0.875 in tube ID
 - 25x cooling coils •
 - 18x Ø1m rings
 - 7x Ø1.25m rings
 - Total tubing length in TS-u ≈ 105 m
 - 103x 90° bends
 - r/d ≈ 1.14

7 Greg Tatkowski | Forced Two-Phase Helium Cooling Scheme for Mu2e Transport Solenoid

Calculation inlet conditions

- Inlet conditions at the TS feedboxes
 - Saturated liquid helium
 - 4.77 K
 - 9 gm/sec
- Heat loads
 - Transfer line: 14 W
 - TS-u heat loads:

		(**)	пеас		Coile	Support			
	Total	Support load	Dynamic load	Radiation	COIIS	section			
	0.51	0.00	0.00	0.51	25-24				
	9.68	9.20	0.00	0.48	23-22	3			
	2.11	0.00	0.00	2.11	21-14				
	4.20	3.60	0.00	0.60	13-12	2			
	1.56	0.00	0.00	1.56	11-6				
MAX heat lo	9.72	9.20	0.00	0.52	5-4	1			
ſ	0.81	0.00	0.05	0.76	3-1				
	28.59	Σ							

Equations used

- Pressure drop
 - Horizontal flow
 - Rane T et al. 2011 Improved correlations for computations of liquid helium two phase flow in cryogenic transfer lines, *Cryogenics* 51 27-33
 - Vertical upwards flow
 - Fridel correlation
 - Thome J 2004 Engineering databook III Wolverine Tube Inc.
 - Found to yield more conservative estimates as compared to:
 - Khalil A 1978 Cryogenic two-phase flow characteristics of helium I in vertical tubes (doctoral dissertation) University of Wisconsin-Madison
 - Vertical downwards flow
 - Rane equation used for pressure drop
 - Downwards flow static head addition not included

Calculation methodology

9

- 1. Start with known inlet conditions at feedboxes
- 2. Calculate properties at TS inlet knowing heat
 - input and pressure drop of transfer lines
- 3. Inside TS
 - a) Use "vertical downwards flow" equations from "equations" slide to determine conditions at the bottom of coil #1
 - b) Re-calculate He properties
 - c) Use "vertical upwards flow" equations from "equations" slide to determine conditions at the top of coil #1
 - d) Re-calculate He properties
 - e) Repeat procedure for coils 2 25, not recovering static head addition in vertical upwards flow segments
- 4. Calculate properties back at feedboxes using same inputs as in step 2

Greg Tatkowski | Forced Two-Phase Helium Cooling Scheme for Mu2e Transport Solenoid

🛠 Fermilab

Results

10 Greg Tatkowski | Forced Two-Phase Helium Cooling Scheme for Mu2e Transport Solenoid

TSU inlet and outlet – horizontal flow regime map

FERMILAB TWO PHASE HELIUM FLOW TESTS

J. C. Theilacker, C. H. Rode, An investigation into flow regimes for two-phase helium flow, Presented at the Cryogenic Engineering Conference, St. Charles, Illinois, June 14-18, 1987

🗕 🛟 Fermilab

Pros/cons of using a two-phase cooling scheme

ADVANTAGES:

- Lower mass flow rate
 - Avoids the use of a circulation pump (~\$200 k)
- Nearly isothermal magnet cooling
- Less refrigeration load when compared to single phase cooling scheme
- Beneficial when design heat load is exceeded

DISADVANTAGES:

- Available literature for upwards flow pressure drop
- Flow separation concerns
- Need for complex engineering analysis
- "Garden-hose" effect

Disadvantage: "Garden-hose" effect

- Long-period pressure and temperature oscillations seen in two-phase helium flow
- Why the name "garden-hose"?
 - Imagine a coiled garden hose half full of water hanging from a horizontal peg
 - When purging the hose of water, addition pressure is required to force the water out of the hose due to the various heads of water in each of the loops
 - Also causes pressure oscillations as liquid slugs exit the hose
- May be related to "hydrodynamic slugging"
- Observed experimentally in:
 - 1) Green M 1980 *The TPC magnet cryogenic system* LBNL Paper LBL-10552M
 - 2) Green M et al. 1979 Forced two-phase helium cooling of large superconducting magnets *Advances in Cryogenic Engineering* **25** p 420-30
 - Haruyama T et al. 1988 Pressure drop in forced two phase cooling of the large thin superconducting solenoid *Advances in Cryogenic Engineering* 33 543-9
 - 4) Green M et al. 1978 A large high current density superconducting solenoid for the time projection chamber experiment *Presented at the International Cryogenic Engineering Conference* 7 London, England
 - 5) Haruyama T et al. 1994 Cryogenic characteristics of a large thin superconducting solenoidal magnet cooled by forced two-phase helium *Cryogenics* **34** 647-50

http://cmapspublic.ihmc.us/rid=1JDJB9Z7J-10YPJTV-1PDD/garden%20hose.jpg

"Garden-hose" (GH) effect in literature

Nomenclature:

• An approximation to GH pressure drop is given in Equation (1)

 $- \Delta P_{GH} = \frac{0.8x_{exit}}{2} \left[\left(\rho_l - \rho_g \right) \right|_{inlet} + \left(\rho_l - \rho_g \right) \right|_{outlet} dNgcos\theta$ (1); from Reference 1

- When TS conditions are applied, $\Delta P_{GH} \approx 7 \text{ kPa}$ (less than the contribution from not recovering static head on the downwards flow segments)

 x_exit exit steam quality ρ_l liquid density ρ_g vapor densitydcoil diameterNnumber of coilsgacceleration due to gravity

 $cos\theta$ equal to 1 for vertical flow

"Garden-hose" pressure drops seen in literature											
Ref.	Coil ID (mm)	Coil diameter (m)	Number of coils	Flow rate (gm/sec)	Pressure drop (kPa)	GH pressure oscillation (kPa)	GH oscillation period (sec)	Notes			
1	15.1	Main coil: 2.21 Comp. coils: 0.35	Main coil: 52 Comp. coils: 45	12	17.2 (predicted)	Peak to valley equal to total GH Δp	30				
2	16.6	0.9	160	4 to 5	20.0 (measured) 24.0 (predicted)	20.0 peak to peak	30	When these parameters are inserted to the TS calculation, Δp is 4x higher			
3	18	2.9	N/A	8 to 20	1.9 to 3.9 (measured) 1.0 to 3.9 (predicted)	Not observed	N/A	150 m piping length arranged in a serpentine Homogeneous flow model for predicted pressure drop			
4	15	2.2	192 turns 64 active turns	12	30.4 (predicted)	20.3 (predicted)	30	Test performed on 1 m diameter test coil, with 20.3 kPa of pressure drop observed			
5	25	3.8	N/A	5 to 11	1.1 to 3.0	1.7 peak to peak differential pressure	5 to 6	64 m piping length arranged in a serpentine Coil temperature increases by 10 mK due to GH effect			
_	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・										

Coil temperature simulations with and without "garden-hose" effect

Steady-state two phase simulation parameters:

TSU support section #1 1.5x heat load from "Input conditions" slide Fluid temperature: 4.809 K Convection coefficient: 1264 ($^{W}/_{m^{2}K}$)

<u>"Garden-hose" simulation additional parameters:</u> Fluid temperature oscillation: +0.200 K, -0.100 K Oscillation period: 30 seconds

Thank you

16 Greg Tatkowski | Forced Two-Phase Helium Cooling Scheme for Mu2e Transport Solenoid