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1. Background and objective

Advantages

・High efficiency thanks to synchronous rotation

・High torque density

・Stable Rotation

High Temperature Superconductor Induction/Synchronous Machine

HTS-ISM

Target ;

Drive motor for the next generation electric vehicle

Direct-drive without transmission gears
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Fig.1 Schematic diagram of 

direct-derived power train system
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1. Background and objective

Necessary functions of the cryocooler for HTS-ISM system     

・High efficiency 

・Light weight

・Robustness against vibration

Development of highly efficient 

Stirling-type cryocooler

Development of linear actuator-type compressor
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Input 3000 W

Coil Wire diameter 1.6 mm

Turn number of coil 210

DC resistance 0.6 Ω

Rated stroke length ±10 mm

Piston diameter 40 mm

Table1 Specifications of compressor

Fig.2 Schematic diagram of compressor

Outer yokeInner yoke

Compression 

zone

Piston

Flexure bearingPermanent 

magnet

Coil

Moving magnet type linear actuator

2. Specifications of the developed actuator
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Finite element method analysis model

S
N

S
N

x

r

Analysis by commercial 

software(JMAG-DesignerⓇ)

Stator

(Analysis conditions)

External circuit : 

Single-phase current source

Mover motion :

Forced displacement 

Inner yoke

Fig.3 Axisymmetric analysis model of the linear actuator 

3. Analytical and experimental method

Mover
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Non-linear spring characteristic 

of the flexure bearing
Orifice effect between 

piston and cylinder

α

Pressure changes in 

Stirling-cycle space

Dumping of the drive coil

Rigidity of the electromagnetic 

force

….etc
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Mover

(piston+motor)

Electrical input :

Sinusoidal wave

Fig.4 Analysis model of the actuator

Electromagnetic field analysis code coupled with kinetic equation

3. Analytical and experimental method



3. Analytical and experimental method
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8

Experimental method 
under no-load condition   

Fig.5 Schematic diagram of experiment under no-load condition

Fig.6 Photograph of compressor assembly 

1Φ 200 V

Laser displacement Compression

zone
Linear actuatorLinear actuator

Laser displacement
sensor

Voltage controled

inverter

sensor

Voltage controlled

inverter

Compression

- zone
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Pressure gaugeNeedle valve

Laser 

displacement 

sensor

Buffer tank

Load test of the compressor with He gas

Fig.7 Photograph of experimental system under load condition V

P

0

Fig.9 PV work

Fig.8 Laser displacement sensor

Pressure

Volume

3. Analytical and experimental method
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(c) Current(a) Displacement

xa=5 mm

(b) Voltage

xa=10 mm

Drive frequency 42 Hz, Displacement 5 mm, 10 mm (experimental results)

In case of xa=10 mm, the current 

waveform was distorted.

Detailed examination by analysis 

The power factor was decreased 

because phase of the current 

waveform lagged.  
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4. Results and discussion

Fig.10 Experimental results under no-load condition
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Fig.11 Power spectrum 

of current waveform

The FFT analysis of the current waveform 

→Third harmonic component was highly included

Current waveform obtained by superimposing the third 

harmonic
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Fig.12  Experimental and analysis results under no-load condition
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4. Results and discussion
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Fig.13 Analysis results of counter-electromotive force

(a)  Waveform (b) Effective value

The counter-electromotive force in the case of forced displacement 

(analysis results) 

→ Distortion of the waveform caused by nonlinear B-H curve
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4. Results and discussion
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Fig.14 Output characteristics (analysis results)

→ Possibility of high efficiency and power factor

Displacement 10.0 mm, Frequency 58 Hz, Current - displacement phase difference 90 °

4. Results and discussion

Mechanical output

2495 W

Efficiency 90 %

Power factor  0.83
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Fig.15 Experimental results under load condition

(a) Input power and PV work (b) Displacement (c) Efficiency and power factor

Next target: ・Improvement of efficiency
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4. Results and discussion
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5. Development and test of the pulse-tube cryocooler
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ｚ

Heat exchanger

Cold stage

Pulse-tube

Hot stage

Fig.16 Photograph of pulse-tube cryocooler

Cooling test of the pulse-tube cryocooler coupled with the compressor



sensor

Heat exchanger

1Φ 400 V

Laser displacement

Buffer tank

Copper pipe

Compression

zone
Linear actuatorLinear actuator

Laser displacement

sensor

sensor
Pressure

Variable voltage
inverter

Cold stage

Pulse tube

sensor
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Buffer tank 

volume

3485 cm3

(1 gal)

Copper

pipe length

2 m

Evaluation of pulse-tube cryocooler at 77 K 

Fig.17 Schematic diagram of experiment of pulse-tube cryocooler

Table2 Specifications 

of buffer unit 

5. Development and test of the pulse-tube cryocooler

Voltage controlled

inverter

Compression

- zone



Pressure 2.5 MPa, Input 160 V, Operational temperature 77 K
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Fig.18 Experimental results of pulse-tube cryocooler

Output 31.603 W COP 0.0276

(a) Input power and PV work (b) Cryocooler output (c) COP

Next target: Re-try of cooling test with the improved compressor  
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5. Development and test of the pulse-tube cryocooler
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6. Conclusion

・ Development of linear actuator-type compressor for 

cryocooler

・ Agreement between experimental and analytical results by 

considering the nonlinear B-H curve of the iron core

・ Modeling the linear actuator by the use of electromagnetic 

field analysis code coupled with kinetic equation

・ Obtaining analytical results which show possibility of high 

efficiency as well as high power factor

・ Conducting cooling test of the pulse-tube cryocooler
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Future plan

・ Experiment at the rated displacement and development of 

analysis code considering thermodynamics of He gas

・ Development of Stirling-type cryocooler for HTS-ISM system

6. Conclusion


