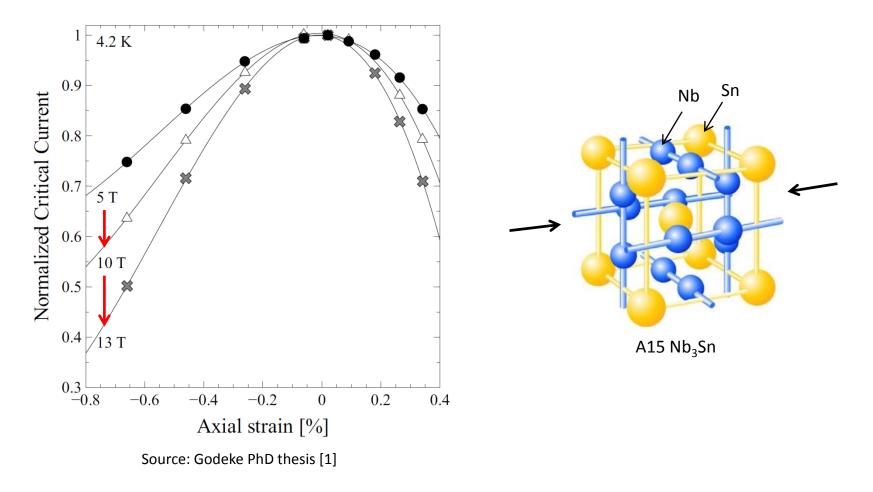
UNIVERSITY OF TWENTE.

THE ORIGIN OF STRAIN SENSITIVITY IN Nb₃Sn


M.G.T. MENTINK^{1,(2,3)}, M. M. J. DHALLE², D. R. DIETDERICH³

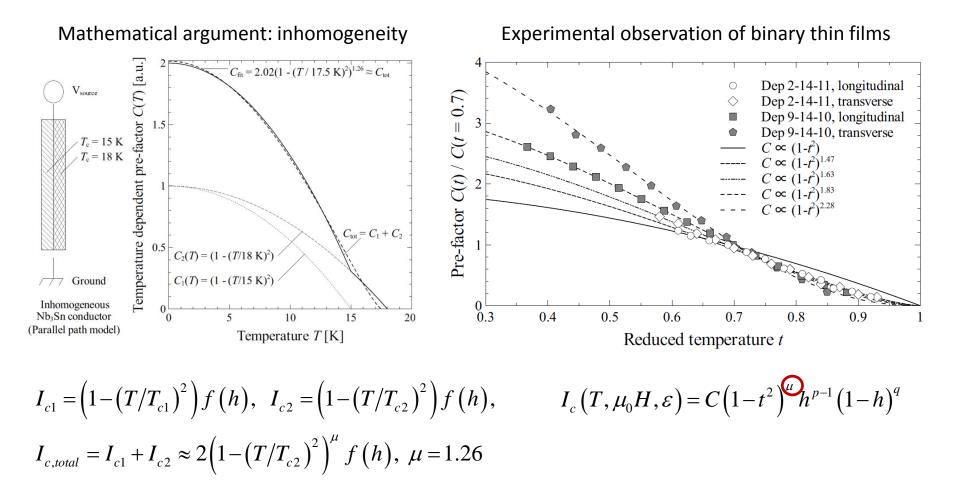
A. GODEKE⁴, F. HELLMAN⁵, H. H. J. TEN KATE^{1,2}

¹CERN, ²UNIVERSITY OF TWENTE, ³LBNL, ⁴FSU, ⁵UC BERKELEY

Motivation

- Intrinsic strain sensitivity: Reduction in I_c with strain
- Affects the performance of high-field magnets utilizing Nb₃Sn
- Becomes an increasingly severe problem at higher magnetic fields
- Why?

Overview


- How does the critical current depend of temperature, magnetic field and strain?
- How can we model the disorder dependent critical temperature and upper critical field?
- Why is Nb₃Sn so strain sensitive?
- How does Nb₃Sn compare to other superconductors?

How does critical current depend on temperature, magnetic field and strain?

$$I_{c}\left(T,\mu_{0}H,\varepsilon\right) = C\left(1-t^{2}\right)^{\mu}h^{p-1}\left(1-h\right)^{q}$$
$$t = \frac{T}{T_{c}\left(0,\varepsilon\right)}, \quad h = \frac{H}{H_{c2}\left(T,\varepsilon\right)},$$
$$H_{c2}\left(T,\varepsilon\right) \approx H_{c20}\left(\varepsilon\right)\left(1-t^{1.52}\right)$$

- MAG (Mentink-Arbelaez-Godeke) scaling relation for Nb₃Sn, with wire dependent parameters C, μ , p, q, $T_c(\varepsilon)$, and $H_{c20}(\varepsilon)$
- Used as standard model (with µ ≈ 1) for the HEP and ITER (mathematically equivalent form) communities [2,3]
- Strain sensitivity "hidden" in critical temperature $T_c(0,\varepsilon)$ and upper critical field $H_{c2}(T,\varepsilon)$
- Recent addition: free parameter μ for the temperature dependence

Why wire dependent free temperature parameter μ ?

MAG scaling relation could benefit from free parameter μ

- Mathematical argument: If $\mu = 1$ for perfectly homogeneous wire $\rightarrow \mu \neq 1$ for inhomogeneous wire
- Experimental observations: (inhomogeneous) binary Nb-Sn thin films, Nb₃Sn wires [3,4,5]

How does MAG scaling compare with other Nb₃Sn scaling relations?

MAG scaling relation:

$$I_{c}\left(T,\mu_{0}H,\varepsilon\right)=C\left(1-t^{2}\right)^{\mu}h^{p-1}\left(1-h\right)^{q}$$

Mathematically equivalent to the Ekin scaling relation [6]:

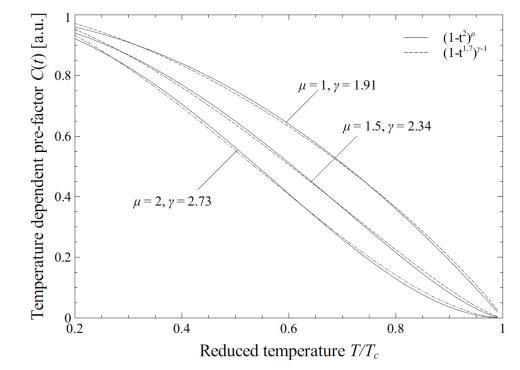
$$I_{c}\left(T,\mu_{0}H,\varepsilon\right) = \frac{C_{E}}{\mu_{0}H}s\left(\varepsilon\right)\left(1-t^{2}\right)^{\mu}\left(1-t^{1.52}\right)^{\eta-\mu}h^{p}\left(1-h\right)^{q}$$

Nearly equivalent* to the Durham scaling relation [7]:

$$I_{c}(T,\mu_{0}H,\varepsilon) = A(\varepsilon)\left(T_{c}(\varepsilon)\left(1-t^{2}\right)\right)^{2}\left(\mu_{0}H_{c2}(T,\varepsilon)\right)^{-0.5}h^{p-1}\left(1-h\right)^{q}$$

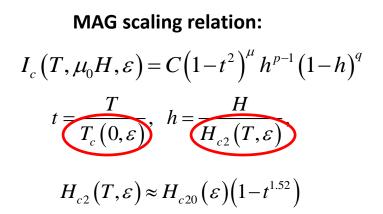
 \rightarrow Consensus has been reached

^{*} Except for a weakly strain-dependent pre-factor $s(\varepsilon)^{9/22}$, and with μ fixed to 1.38


How does MAG scaling compare with NbTi scaling?

$$I_{c}(T,\mu_{0}H) = \frac{C_{B}}{\mu_{0}H}h^{p}(1-h)^{q}(1-t^{1.7})^{\gamma}$$

Approximation:

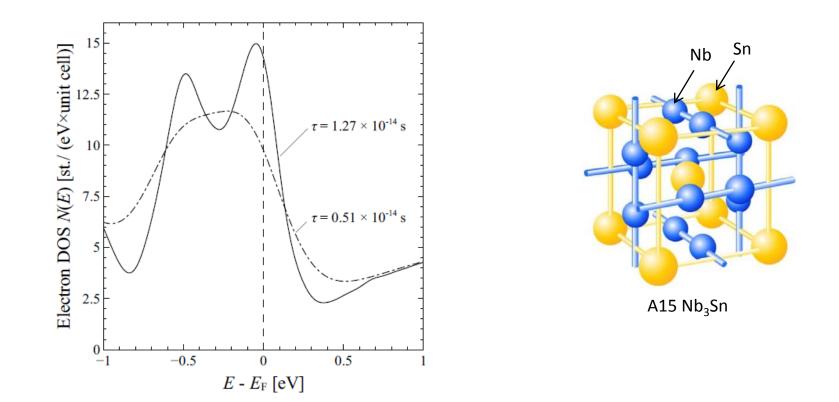

 $(1-t^{1.7})^{\gamma-1} \approx (1-t^2)^{\mu}$ Rewritten to
mathematically
equivalent form $I_c (T, \mu_0 H) = C (1-t^2)^{\mu} h^{p-1} (1-h)^q$

NbTi critical current

- MAG scaling relation for Nb₃Sn equivalent to Bottura scaling relation for NbTi (not considering strain)
- But different temperature dependence of H_{c2} : Nb₃Sn: $H_{c2}(t) \approx H_{c20}(1-t^{1.52})$, NbTi: $H_{c2}(t) \approx H_{c20}(1-t^{1.7})$

Critical current density of Nb₃Sn and NbTi

Works for both Nb₃Sn and NbTi


- Consistent with Ekin and Durham scaling relationships for Nb₃Sn
- Consistent with Bottura scaling relation for NbTi, but with different temperature dependence of upper critical field
- Nb₃Sn strain sensitivity "hidden away" in strain dependent critical temperature $T_c(\epsilon)$ and upper critical field $H_{c2}(0,\epsilon)$

 \rightarrow What determines strain dependent T_c(ϵ) and H_{c2}(0, ϵ)?

Overview

- How does the critical current depend of temperature, magnetic field and strain?
- How can we model the disorder dependent critical temperature and upper critical field?
- Why is Nb₃Sn so strain sensitive?
- How does Nb₃Sn compare to other superconductors?

Influence of disorder on Nb₃Sn

- Superconducting properties of Nb₃Sn are strongly disorder dependent, so disorder must be included in calculations
- Ab-initio calculations of Nb₃Sn with Quantum Espresso [9]
- Electron-lifetime broadening approach [10]:

Disorder \rightarrow Reduced scattering time $\tau \rightarrow$ Electron-lifetime broadening $E_B = h/(2\pi\tau)$

Validation: Martensitic transformation

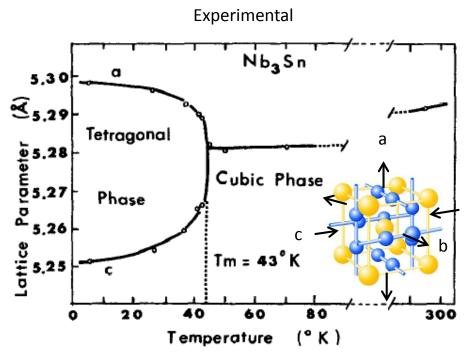
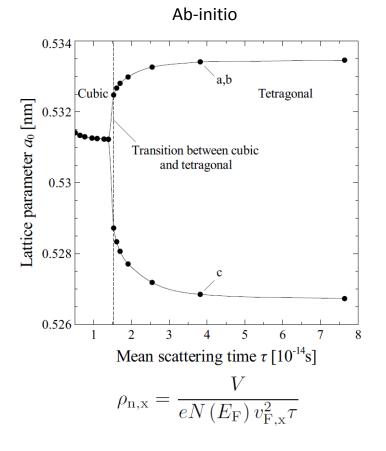
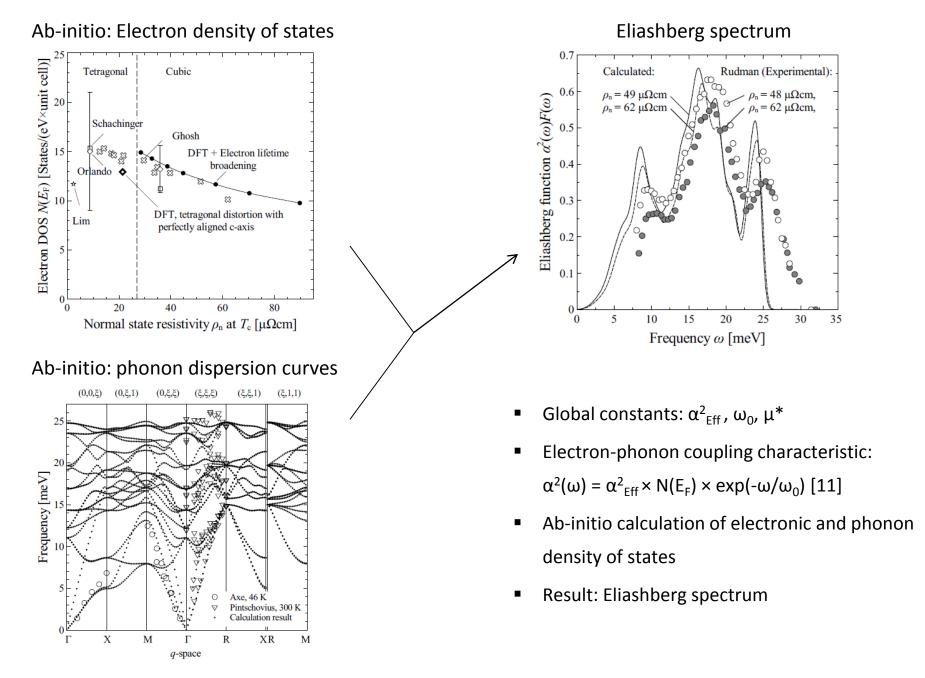
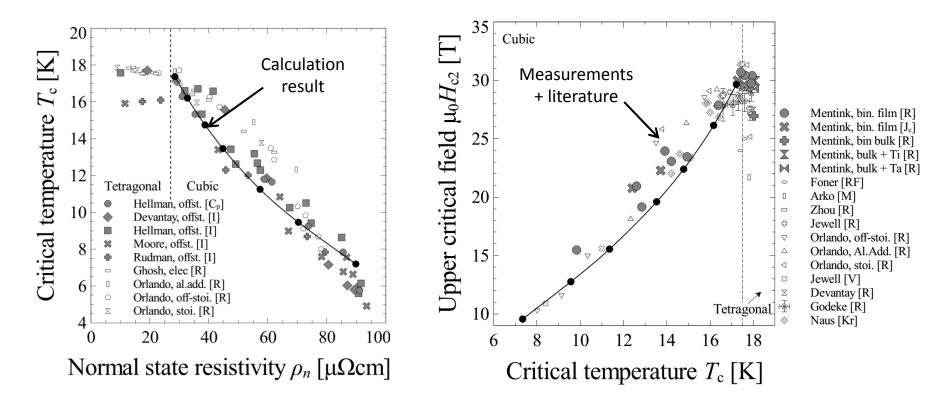




Fig. 1. Lattice parameter versus temperature for Nb_3Sn single crystal determined with film technique.



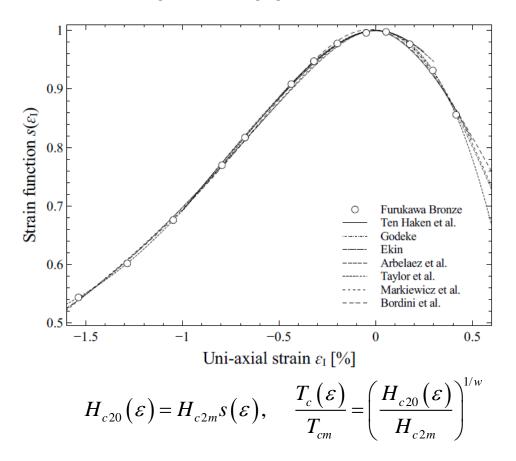
- Experimentally observed Martensitic transformation:
 - Spontaneous tetragonal distortion at low temperature (T < 43 K)
 - Not present in disordered samples, $\rho_n > 25 \pm 3 \mu\Omega cm$
- Ab-initio calculation:
 - Optimal shape tetragonal for $\tau > \tau_c = (1.53 \pm 0.08) \times 10^{-14}$ s, cubic for $\tau < \tau_c$
 - Corresponding calculated normal state resistivity: $\rho_n > 27.0 \pm 1.4 \ \mu\Omega \text{cm} \rightarrow \text{Consistent}$

Connection to superconducting properties

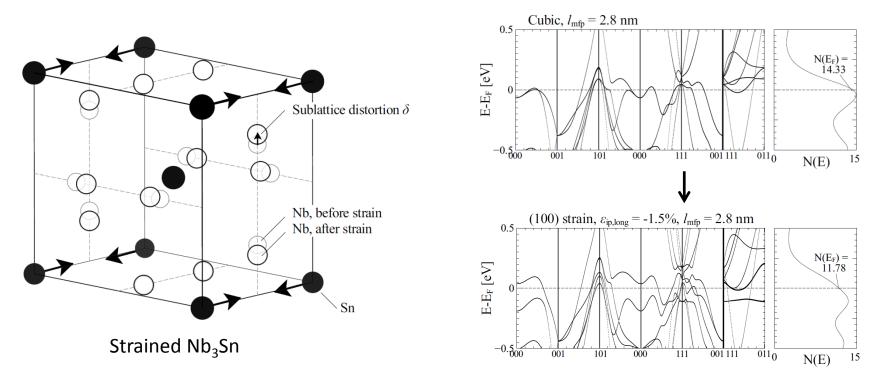
Calculation model for T_c and H_{c2}

Calculation model for disorder dependent T_c , H_{c20} , and martensitic transition

- Calculation result:
 - Strong coupling corrected critical temperature
 - Strong coupling corrected variable limit upper critical field with Pauli limiting
- Validated with experimental observations



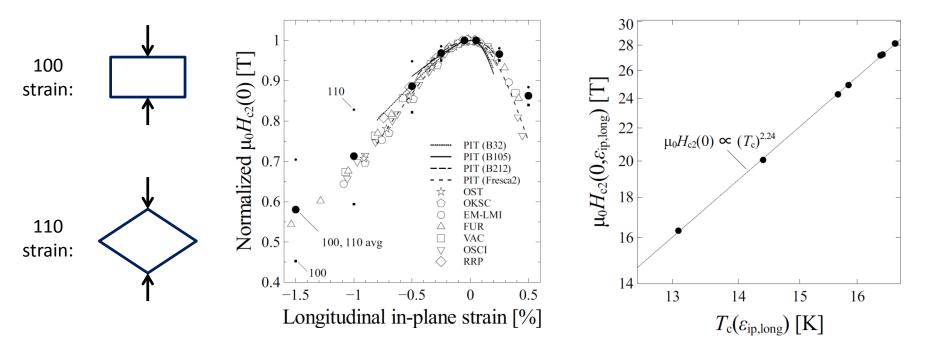
Overview


- How does the critical current depend of temperature, magnetic field and strain?
- How can we model the disorder dependent critical temperature and upper critical field?
- Why is Nb₃Sn so strain sensitive?
- How does Nb₃Sn compare to other superconductors?

How are T_c and H_{c20} affected by strain?

- Strain dependence of I_c through strain-dependent $H_{c20}(\varepsilon)$ and $T_c(\varepsilon)$
- Strain dependence of $H_{c20}(\varepsilon)$ expressed with strain function $s(\varepsilon)$ (well-known shape)
 - (Semi)-empirical expressions with free strain parameters
 - $T_{\rm c}(\varepsilon) \sim H_{\rm c20}(\varepsilon)^{1/w}, w = 2...3$
- What determines (the strain dependence of) T_c and H_{c20}?

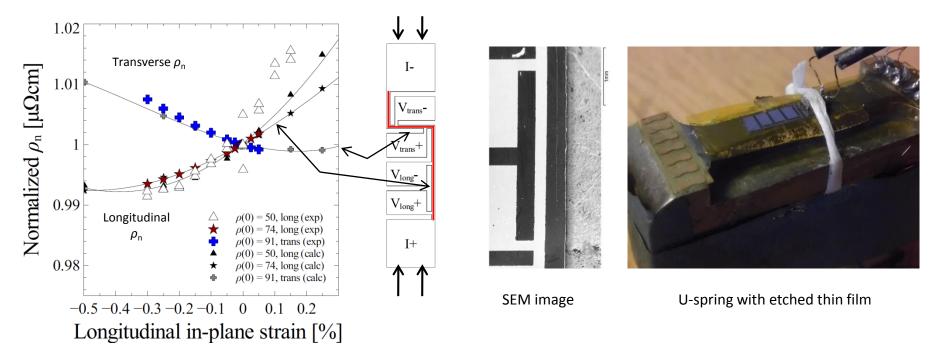
External application of strain: Sub-lattice distortion


Electronic band structure

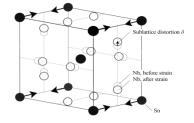
Strain induced distortion of the niobium chains (Calculated ab-initio)

- Similar to occurrence during martensitic transition (= experimentally observed)
- Anisotropic in nature
- Affects the electronic and vibrational properties of the crystal

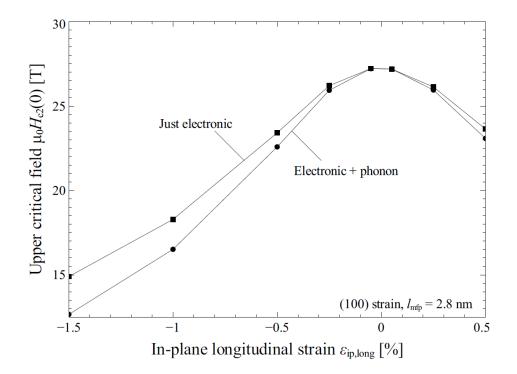
(Sublattice distortion suppressed \rightarrow Properties of crystal barely affected)


Strain dependent critical temperature and upper critical field

Calculation:


- Fixed mean free path so that $T_{cm} = 16.7 \text{ K}$, $\mu_0 H_{c2m} = 28.1 \text{ T}$, no assumed strain behaviour or free strain parameters
- Calculated normalized $H_{c20}(\varepsilon)$ consistent with experimental observations in shape and magnitude
- Calculation: Power law dependence between T_c and H_{c2} with w = 2.24, consistent with experimental observations [7]

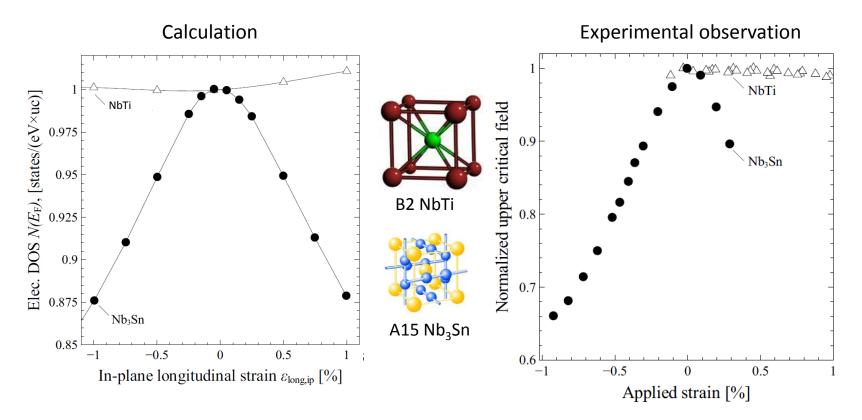
Strain dependent normal state resistivity



Anisotropic normal state resistivity due to anisotropic nature of sublattice distortion

- Calculation result: Strain \rightarrow Anisotropic resistivity
 - Compressive strain: Longitudinal $\rho_n \downarrow$, transverse $\rho_n \uparrow$
- Experiment:
 - Nb-Sn thin films etched into special patterns, allowing for longitudinal and transverse resistivity measurement
 - Result: Consistent with calculation result

Electronic and vibrational contribution to strain sensitivity


What is the relative contribution to strain sensitivity from the strain-dependent electronic and vibrational properties?

- Comparison: Strain sensitivity phonon DOS suppressed versus regular calculation
- Calculation result: Near stoichiometry, strain-sensitivity mainly (~85%) due to strain-dependent electronic properties
- Experimental evidence: Strain-dependent $\rho_n \rightarrow$ Strain sensitivity of electronic properties not negligible

Overview

- How does the critical current depend of temperature, magnetic field and strain?
- How can we model the disorder dependent critical temperature and upper critical field?
- Why is Nb₃Sn so strain sensitive?
- How does Nb₃Sn compare to other superconductors?

Comparison between superconductors

Calculation result	Experimental result	Why?
Strain sensitivity $Nb_3Sn > Nb_3AI$	Consistent [12]	Lower degree of sublattice distortion in Nb ₃ Al
Strain sensitivity $Nb_3Sn \gg Nb$	Consistent	No niobium chains in Nb
Strain sensitivity $Nb_3Sn \gg NbTi$	Consistent [13]	No niobium chains in NbTi

Conclusions

- Critical current of Nb₃Sn as a function of temperature, magnetic field, strain
 - Consensus between most commonly used descriptions
 - Same as NbTi except for different temperature dependence of upper critical field
- Ab-initio calculations + microscopic theory:
 - Disorder dependent martensitic transformation, critical temperature, upper critical field
 - Validated with experimental observations
- Strain sensitivity in Nb₃Sn: due to strain-induced distortion of the niobium chains
 - Result: Strain sensitivity in superconducting and normal state properties
 - Validated with experimental observations
- Other superconductors:
 - Nb₃Al: Reduced sub-lattice distortion \rightarrow Reduced strain sensitivity
 - Bcc Nb and NbTi: No niobium chains → Barely any strain sensitivity

References

[1]	A. Godeke, "Performance Boundaries in Nb ₃ Sn Superconductors", PhD Thesis,
	University of Twente (2005)
[2]	A. Godeke, G. Chlachidze, D. R. Dietderich, A. K. Ghosh, M. Marchevsky, M. G. T.
	Mentink, and G. L. Sabbi, "A Review of Conductor Performance for the LARP High-
	Gradient Quadrupole Magnets", Supercond. Sci. Technol. 26, 095015 (2013)
[3]	L. Bottura and B. Bordini "J _c (B,T,ε) Parameterization for the ITER Nb ₃ Sn Production",
	IEEE Trans. 19, p 1521 (2009)
[4]	M. G. T. Mentink, "Critical surface parameterization of high J _c RRP Nb ₃ Sn Strand",
	Internship report, University of Twente / LBNL (2008)
[5]	B. Bordini, A. Ballarino, and L. Oberli, "Critical Current measurements at 1.9 K and
	Temperature Scaling", CERN/LARP Video-Meeting, June 30 th (2014)
[6]	J. W. Ekin, "Unified Scaling Law for Flux Pinning in Practical Superconductors: I.
	Separability postulate, raw scaling data and parameterization at moderate strains", SuST
	23, 083001 (2010)
[7]	X. F. Lu, D. M. J. Taylor, and D. P. Hampshire, "Critical Current Scaling Laws for
	Advanced Nb ₃ Sn Superconducting Strands for Fusion Applications with Six Free
	Parameters", SuST 21, 105016 (2008)
[8]	L. Bottura, "A Practical Fit for the Critical Surface of NbTi", IEEE Trans. Appl. Supercond.
	10, 1054 (2000)
[9]	P. Giannozzi et al. "Quantum Espresso: A Modular and Open-Source Software
	Project for Quantum Simulations of Materials", J. Phys. Cond. Matt. 21, 395502 (2009)
[10]	L.F. Mattheis and L. R. Testardi, "Electron-lifetime effects on properties of Nb3Sn, Nb3Ge, and Ti-V-Cr alloys", Phys. Rev. B.
	20, 2196 (1979)
[11]	W. D. Markiewicz, "Elastic stiffness model for the critical temperature Tc of Nb3Sn including strain dependence", Cryog.
	44, 767 (2004)
[12]	T. Takeuchi, "Nb ₃ Al Conductors for High-Field Applications", Supercond. Sci. Techn. 13,
	R101-R119 (2000)
[13]	J. Ekin, "Unified Scaling Law for Flux Pinning in Practical Superconductors: I. Separability
	postulate, raw scaling data and parameterization at moderate strains", Supercond. Sci. Techn.
	23, 083001 (2010)