Helium-Hydrogen $P\rho T-x$ Measurements and Equation of State

Presenter:
Ian Richardson (WSU)

Co-Authors:
Thomas Blackham (WSU), Jacob Leachman (WSU), Eric Lemmon (NIST)

July 1, 2015
Liquid Hydrogen as a Rocket Fuel

- Liquid hydrogen (LH_2) tanks are pressurized with gaseous helium
- Small amounts of helium dissolve into the liquid hydrogen
- Current models assume pure LH$_2$ properties
- No real fluid helium-hydrogen mixture model exists

NASA's Space Launch System: Images from spacenews.com (above) and nasa.gov (right)
Ideal Models

- Dalton’s and Amagat’s law are approximations for real-gas mixtures

- Dalton’s law:
 \[P_m = \sum_{i=1}^{k} P_i(Tm, Vm) \]

- Amagat’s law:
 \[V_m = \sum_{i=1}^{k} V_i(Tm, Pm) \]
Binary Mixture Fluid Classifications

A – Type I Fluid (methane – ethane) – Simple two phase fluid.
B – Type II (water – phenol) Stable liquid-liquid phase.
C – Type III (helium – hydrogen) – Two distinct critical lines that never meet.

¹ C. L. Young, Pure and Appl. Chem. 68, pp. 1561-1572 (1986).
Type III Fluid Surface

- Complex fluid interactions require a real fluid model
- Need VLE and PpT-x experimental measurements

\[C. \text{L. Young, Pure and Appl. Chem. 68, pp. 1561-1572 (1986).} \]
• Only Vapor-Liquid-Equilibrium (VLE) data available
• Need P_T-x measurements
PpT-x Measurements

• Pressure: Paroscientific Digiquartz
• Composition: Gas Chromatography
• Temperature: Secondary Standard Germanium RTDs
• Density: Magnetic Suspension Microbalance

Liquid \(\text{pH}_2 \) \(P_pT \) measurements agree with \(\text{pH}_2 \) EOS\(^3\) within 0.06\% (above), early \(\text{LN}_2 \) agreed within 0.1\%\(^4\).

Conducted \(P_pT \)-x measurement on helium-hydrogen mixtures from 17 K to 29 K for pressures up to 2 MPa.

Mixture Equations of State

Helmholtz Free Energy Equation

\[\alpha(\delta, \tau, x) = \alpha^0(\rho, T, x) + \alpha^r(\delta, \tau, x) \]

Ideal Equation

\[\alpha^0(\rho, T, x) = \sum_{i=1}^{N} x_i \left(\alpha^0_{0i}(\delta, \tau) + \ln(x_i) \right) \]

Residual Equation

\[\alpha^r(\delta, \tau, x) = \sum_{i=1}^{N} (x_i \alpha^r_{0i}(\delta, \tau)) + \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} (x_i x_j F_{ij} \alpha^r_{ij}(\delta, \tau)) \]

Reduced Density

\[\delta = \frac{\rho}{\rho_c(x)} \]

Reduced Temperature

\[\tau = \frac{T_c(x)}{T} \]
He-H$_2$ Equation of State Comparisons to Experimental Measurements

![Graph showing comparison between experimental measurements and calculated values for He-H$_2$ system.](image)
He-H$_2$ EOS Saturation Region
Future Work

- Does dissolved helium affect system level design and operation decisions?
 - Compare system performance assuming no helium dissolution and using the new He-H\(_2\) EOS.
- Use new capabilities to develop mixture models for other cryogens (neon-helium, neon-hydrogen, hydrogen-deuterium etc.)
Summary

• Conducted the first ever PpT-x measurements of He-H$_2$ mixtures.
• Developed a reference quality mixture equation of state.
• This EOS will be used to determine if dissolved helium affects system level decisions.
• This work will be continued for other cryogenic mixtures.
Acknowledgements

NASA
• Dr. Stephen Barsi
 (NASA – GRC)

National Institute of Standards and Technology
• Dr. Mark McLinden
 (NIST – Boulder)

NSTRF Grant
NNX14AL59H
THANK YOU
PpT-x Measurements

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Temperature [K]</th>
<th>Pressure [PSI]</th>
<th>Density [kg/m^3]</th>
<th>% He [mol %]</th>
<th>% H2 [mol %]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>16.83</td>
<td>141.6</td>
<td>76.34</td>
<td>0.76</td>
<td>99.24</td>
</tr>
<tr>
<td>2.2</td>
<td>20.86</td>
<td>159.0</td>
<td>72.18</td>
<td>1.33</td>
<td>98.67</td>
</tr>
<tr>
<td>2.3</td>
<td>24.88</td>
<td>154.0</td>
<td>66.63</td>
<td>1.33</td>
<td>98.67</td>
</tr>
<tr>
<td>2.4</td>
<td>28.88</td>
<td>156.3</td>
<td>58.81</td>
<td>0.74</td>
<td>99.26</td>
</tr>
<tr>
<td>2.5</td>
<td>16.83</td>
<td>310.0</td>
<td>77.30</td>
<td>1.42</td>
<td>98.58</td>
</tr>
<tr>
<td>2.6</td>
<td>20.86</td>
<td>303.7</td>
<td>74.05</td>
<td>2.64</td>
<td>97.36</td>
</tr>
<tr>
<td>2.7</td>
<td>24.87</td>
<td>311.8</td>
<td>69.17</td>
<td>3.62</td>
<td>96.38</td>
</tr>
<tr>
<td>2.8</td>
<td>28.9</td>
<td>305.2</td>
<td>62.04</td>
<td>3.35</td>
<td>96.65</td>
</tr>
<tr>
<td>2.9</td>
<td>16.84</td>
<td>44.4</td>
<td>75.43</td>
<td>0.44</td>
<td>99.56</td>
</tr>
<tr>
<td>2.10</td>
<td>19.85</td>
<td>51.8</td>
<td>71.96</td>
<td>0.29</td>
<td>99.71</td>
</tr>
<tr>
<td>2.11</td>
<td>22.87</td>
<td>55.0</td>
<td>68.21</td>
<td>0.25</td>
<td>99.75</td>
</tr>
</tbody>
</table>