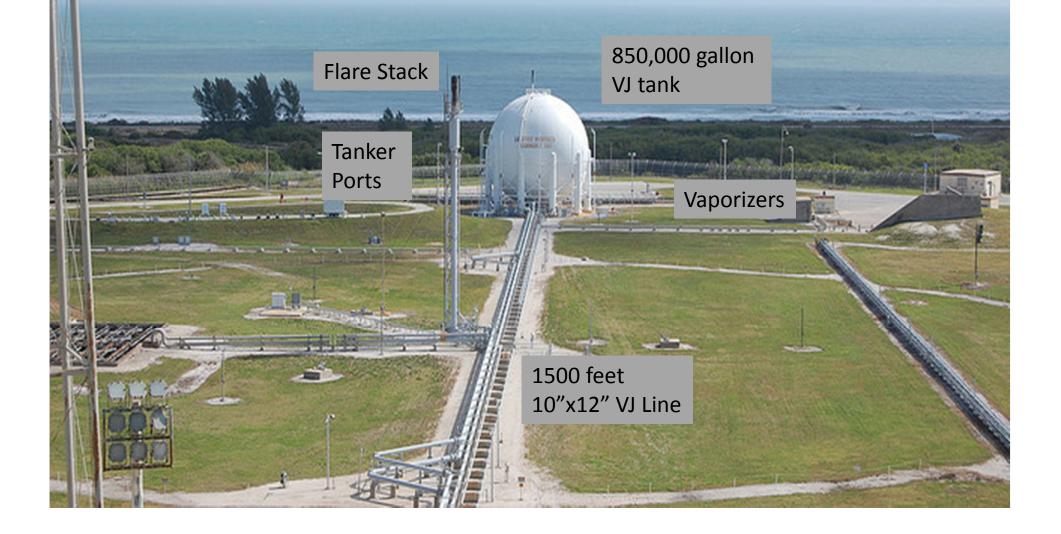


# Thermo-physical performance prediction of the KSC GODU for liquid hydrogen

#### [C2PoH-07] CEC 2015

#### J. H. Baik<sup>1</sup>, W. U. Notardonato<sup>2</sup>, S. Karng<sup>3</sup>, and I. Oh<sup>4</sup>


<sup>1</sup>Florida Solar Energy Center, University of Central Florida, Cocoa, FL, USA 32922
 <sup>2</sup>Cryogenics Test Laboratory, Kennedy Space Center, FL, USA 32899
 <sup>3</sup>Center for Urban Energy System Research, Korea Institute of Science Technology, Seoul, Republic of Korea 136791
 <sup>4</sup>Green City Technology Institute, Korea Institute of Science Technology, Seoul, Republic of Korea 136791





#### NASA LH2 Background

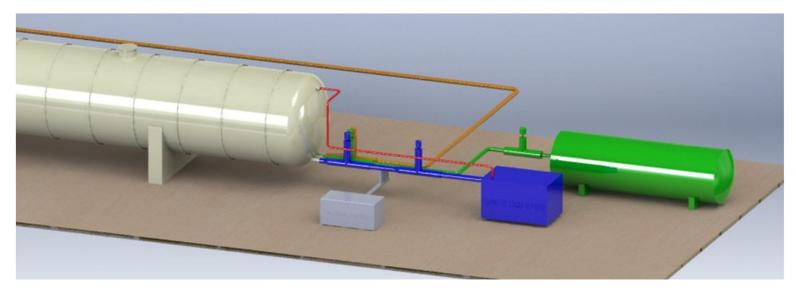
- NASA helped drive the development of large scale LH2 industry
- LC 39 built for Apollo and reused for Shuttle



## LH2 Loss for STS Program

- Replenish
  - heat leak during transit, chill-down of transfer system, and tanker press.
  - Approx. 13% of the KSC hydrogen purchased over the Space Shuttle Program
- Normal Evaporation Loss
  - heat leak from the ambient to the ground storage tank
  - Approx. 12% of the KSC hydrogen purchased over the Space Shuttle Program
- Load Loss
  - chill-down of ground and flight system and ET heat leak during replenish
  - Approx. 21% of the KSC hydrogen purchased over the Space Shuttle Program
- On-board Quantity
  - Volume of the External Tank
  - Approx. 55% of the KSC hydrogen purchased over the Space Shuttle Program.

### Future Spaceport LH2 Goals


- Goal is to increase the efficiency of hydrogen operations to >80%
  - Current KSC practice is approximately 55%
  - Defined by mass launched/mass purchased
- Targeted hydrogen losses
  - Storage tank boil off
  - Chill down losses
  - Tanker venting recovery
  - Line drain and purge
  - Tank venting
- Local hydrogen production and liquefaction capability
  - Sized for KSC needs but allowed to sell offsite
- Propellant conditioning and densification
  - Bulk temperature to 16 K
  - Thermal energy storage for load balancing
- Reduction in helium use
- Reducing in spaceport carbon footprint

#### GODU LH2 Objectives

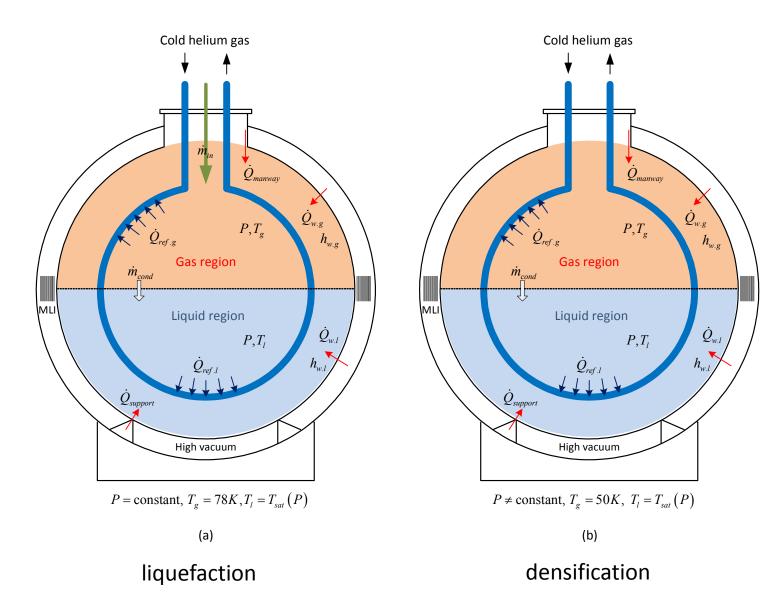
- Demonstrate zero loss storage and transfer of LH2 at a large scale
- Demonstrate hydrogen liquefaction using close cycle helium refrigeration
- Demonstrate hydrogen densification in storage tank and loading of flight tank
- Also, includes a number of secondary objectives including creating a densified hydrogen servicing capability, maintaining critical cryogenic design and operations skills, demonstrating low-helium usage operations, and validating modern component technologies

### GODU LH<sub>2</sub> at the Hydrogen Technology Demonstration Site at NASA KSC.





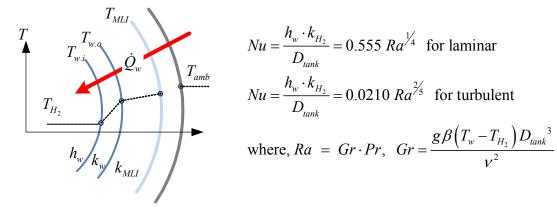
#### Refrigerator, storage tank, HX




- Linde R1620 reverse-Brayton helium refrigerator
  - 800W at 20K, 400W at 17K
- 33K gal storage tank : LxD= 21.3mx2.9m
  - MLI, manway, 3 line penetrations, vent
- Cold hx 40 lobes, 8m<sup>2</sup> hx surface, SUS 1/4"OD, 244m long



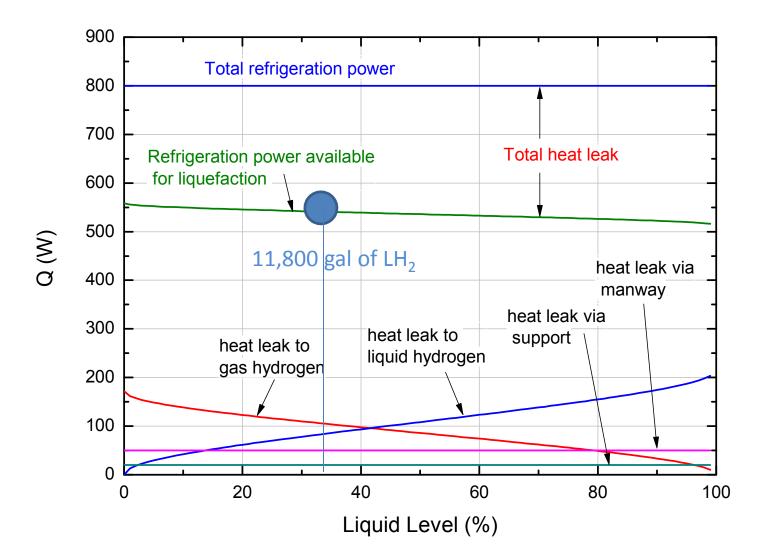
Ref : Fesmire et al., "Integrated hx design for a cryogenic storage tank, ACE Proc 1573, p.1365-1372 (2014)"


#### Thermal model of the storage tank

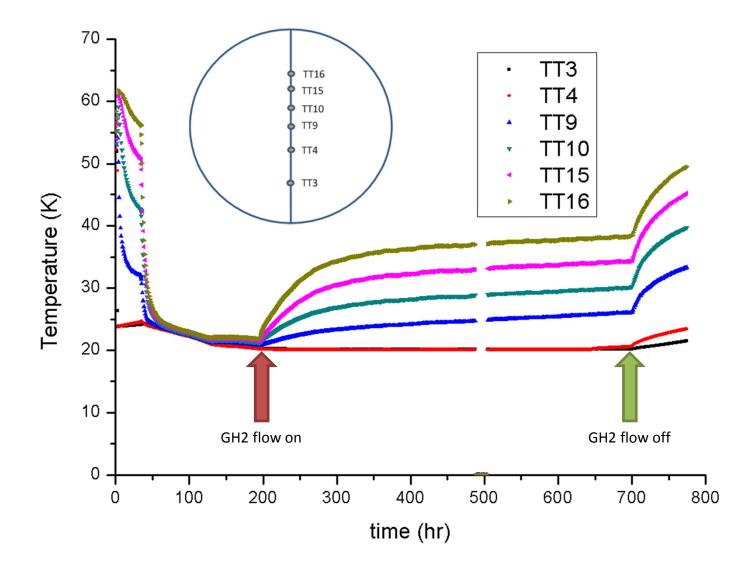


#### Mass, energy balance for gas and liquid hydrogen regions

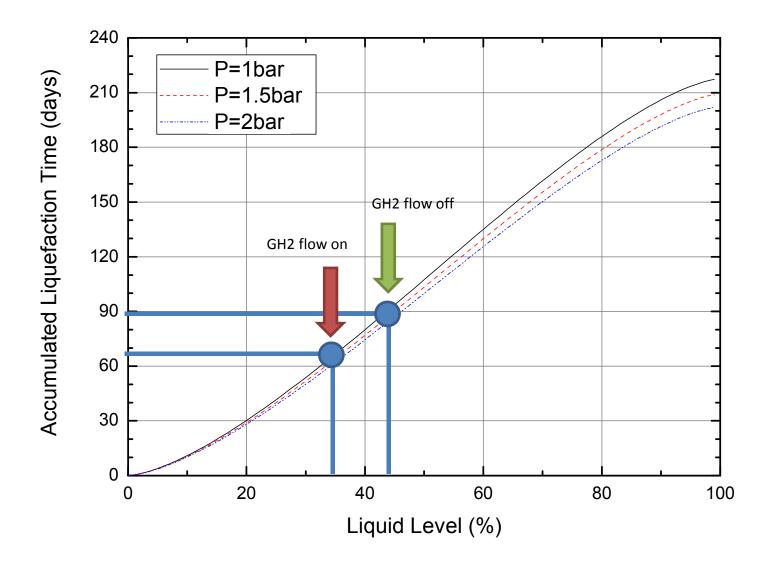
| Liquefaction model                                                                                                                    | Densification model                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| $\frac{dm_g}{dt} = \dot{m}_{in} - \dot{m}_{cond}$                                                                                     | $\frac{dm_g}{dt} = -\dot{m}_{cond}$                                                                               |
| $\frac{d\left(m_{g}u_{g}\right)}{dt} = \dot{m}_{in}h_{in} - \dot{m}_{cond}h_{l} + \dot{Q}_{w.g} + \dot{Q}_{manway} - \dot{Q}_{ref.g}$ | $\frac{d\left(m_{g}u_{g}\right)}{dt} = -\dot{m}_{cond}h_{l} + \dot{Q}_{w.g} + \dot{Q}_{manway} - \dot{Q}_{ref.g}$ |
| $\frac{dm_l}{dt} = \dot{m}_{cond}$                                                                                                    | $\frac{dm_l}{dt} = \dot{m}_{cond}$                                                                                |
| $\frac{d\left(m_{l}u_{l}\right)}{dt} = \dot{m}_{cond}h_{l} + \dot{Q}_{w.l} + \dot{Q}_{support} - \dot{Q}_{ref.l}$                     | $\frac{d\left(m_{l}u_{l}\right)}{dt}=\dot{m}_{cond}h_{l}+\dot{Q}_{w.l}+\dot{Q}_{support}-\dot{Q}_{ref.l}$         |


#### Natural convection heat transfer correlation




## **Reduced equations**

| Liquefaction model                                                                                                                                                                                                                                                 | Densification model                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\dot{m}_{cond} = \frac{\dot{Q}_{ref.g} - \dot{Q}_{w.g} - \dot{Q}_{manway}}{(h_{in} - h_l) + \frac{\rho_g}{\rho_l} u_g}$ $\dot{m}_{in} = \dot{m}_{cond} \left(1 - \frac{\rho_g}{\rho_l}\right)$ $\dot{Q}_{ref} = \dot{Q}_{ref.g} + \dot{Q}_{ref.l}$ $P = constant$ | $\dot{m}_{cond} = \frac{\dot{Q}_{ref.g} - \dot{Q}_{w.g} - \dot{Q}_{manway}}{u_g - h_l}$ $\frac{dT_l}{dt} = \frac{1}{m_l C_l} \left[ \dot{Q}_{support} + \dot{Q}_{w.l} - \dot{Q}_{ref.l} + \dot{m}_{cond} \left( h_l + u_l \right) \right]$ $\frac{dP}{dt} = \frac{\dot{m}_{cond} RT_g}{V_g} \left( \frac{P}{\rho_l RT_g} - 1 \right)$ $\dot{Q}_{ref} = \dot{Q}_{ref.g} + \dot{Q}_{ref.l}$ $P = P_{sat} \left( T_l \right)$ |


#### Heat leaks vs. Liquid level



## Liquefaction & ZBO



#### Liquefaction time





# Conclusion

- A simple lumped thermal model the NASA KSC GODU LH<sub>2</sub> has been developed to predict,
  - Thermal losses to the storage tank
  - In-situ Liquefaction time required for various fill levels
  - Transient LH<sub>2</sub> temperature and pressure during densification behavior
- The modeling results show very good agreements with recent KSC experiment data
  - Total heat leak measurement at 33% LH<sub>2</sub> level matches its modeling prediction.
  - The liquefaction modeling demonstrates its useful capability of liquid level estimation or time estimation required for specific liquid level in the storage tank.



