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NASA LH2 Background

• NASA helped drive the development of large scale LH2 industry

• LC 39 built for Apollo and reused for Shuttle
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� Replenish

� heat leak during transit, chill-down of transfer system, and tanker press.

� Approx. 13% of the KSC hydrogen purchased over the Space Shuttle 

Program

� Normal Evaporation Loss

� heat leak from the ambient to the ground storage tank

� Approx. 12% of the KSC hydrogen purchased over the Space Shuttle 

Program

� Load Loss 

� chill-down of ground and flight system and ET heat leak during replenish

� Approx. 21% of the KSC hydrogen purchased over the Space Shuttle 

Program

� On-board Quantity 

� Volume of the External Tank

� Approx. 55% of the KSC hydrogen purchased over the Space Shuttle 

Program.

LH2 Loss for STS Program



Future Spaceport LH2 Goals
• Goal is to increase the efficiency of hydrogen operations to >80%

– Current KSC practice is approximately 55%

– Defined by mass launched/mass purchased

• Targeted hydrogen losses

– Storage tank boil off

– Chill down losses

– Tanker venting recovery

– Line drain and purge

– Tank venting

• Local hydrogen production and liquefaction capability

– Sized for KSC needs but allowed to sell offsite

• Propellant conditioning and densification 

– Bulk temperature to 16 K

– Thermal energy storage for load balancing

• Reduction in helium use

• Reducing in spaceport carbon footprint 



GODU LH2 Objectives

• Demonstrate zero loss storage and transfer of LH2 at 

a large scale

• Demonstrate hydrogen liquefaction using close cycle 

helium refrigeration

• Demonstrate hydrogen densification in storage tank 

and loading of flight tank 
• Also, includes a number of secondary objectives including creating a 

densified hydrogen servicing capability, maintaining critical cryogenic 

design and operations skills, demonstrating low-helium usage operations, 

and validating modern component technologies



GODU LH2 at the Hydrogen Technology 

Demonstration Site at NASA KSC.



Refrigerator, storage tank, HX

• Linde R1620 reverse-Brayton helium refrigerator

– 800W at 20K, 400W at 17K

• 33K gal storage tank : LxD= 21.3mx2.9m

– MLI , manway, 3 line penetrations, vent 

• Cold hx – 40 lobes, 8m2 hx surface, SUS 1/4”OD, 

244m long

Ref : Fesmire et al., “Integrated hx design for a cryogenic 

storage tank, ACE Proc 1573, p.1365-1372 (2014)”



Thermal model of the storage tank
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Liquefaction model Densification model
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Liquefaction model Densification model

Reduced equations
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Heat leaks vs. Liquid level
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GH2 flow on GH2 flow off

Liquefaction & ZBO



Liquefaction time
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Conclusion

• A simple lumped thermal model the NASA KSC GODU 
LH2 has been developed to predict,
– Thermal losses to the storage tank

– In-situ Liquefaction time required for various fill levels

– Transient LH2 temperature and pressure during 
densification behavior 

• The modeling results show very good agreements with 
recent KSC experiment data
– Total heat leak measurement at 33% LH2 level matches its 

modeling prediction.

– The liquefaction modeling demonstrates its useful 
capability of liquid level estimation or time estimation 
required for specific liquid level in the storage tank.


