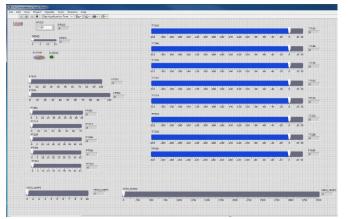
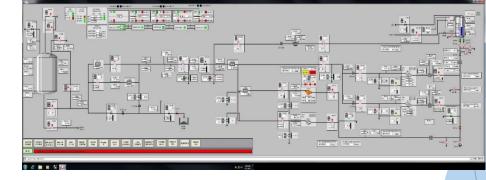
Simulated Propellant Loading System (SPLS): Testbed for Cryogenic Component and Control Systems Research & Development

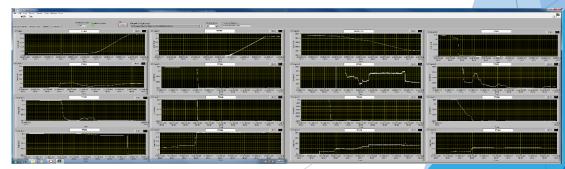

J. Toro Medina , J. Sass , J. Youney , W. Schmitz NASA Kennedy Space Center Cryogenics Test Laboratory

Introduction

- Simulated Propellant Loading System (SPLS)
 - Development of a simulated launch cryogenic propellant delivery system
 - Testing of a complete loading sequence for ground systems research and development
 - Validation and verification of a reliable repeatable sequence
 - Supporting testing of new technologies
 - Hardware and Software
 - Future capability improvements
 - Future technology testing

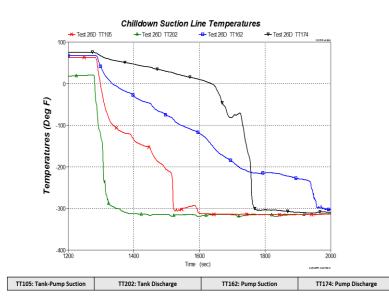

Experimental Setup

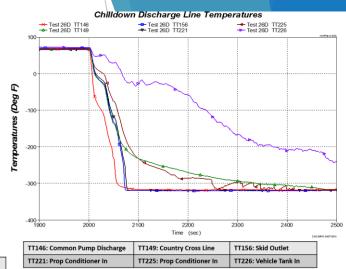
- Storage Tank
- Simulated Vehicle Tank
- Propellant Transfer Lines
- Instrumentation
- Data Acquisition, Command and Control System
- Monitoring and Real-Time Plotting
- SPLS Simulator

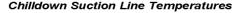


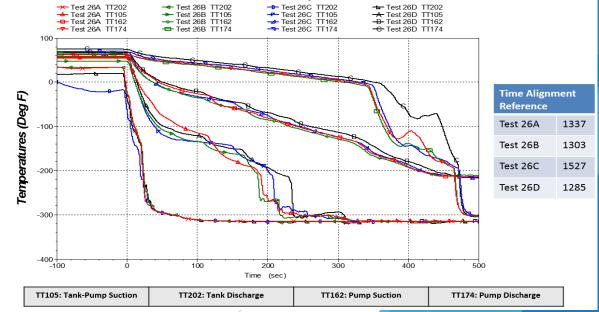
SPLS Full Configuration

PLC DAC, Command, and Control System

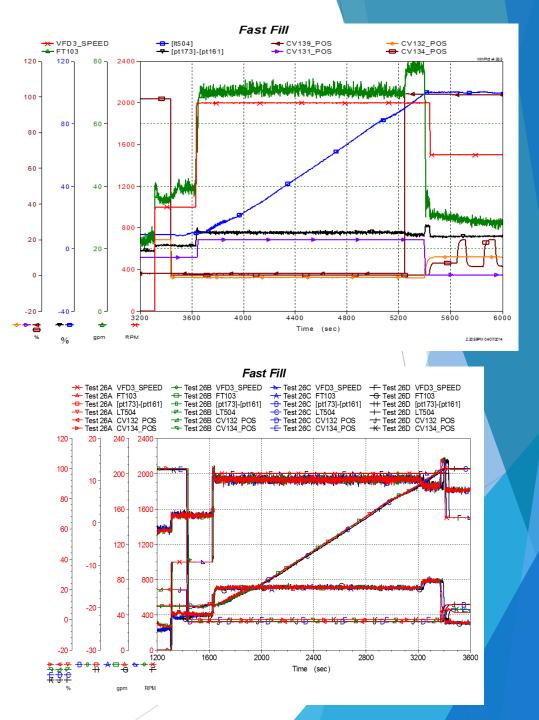



Real-time Plotting Monitoring Tool

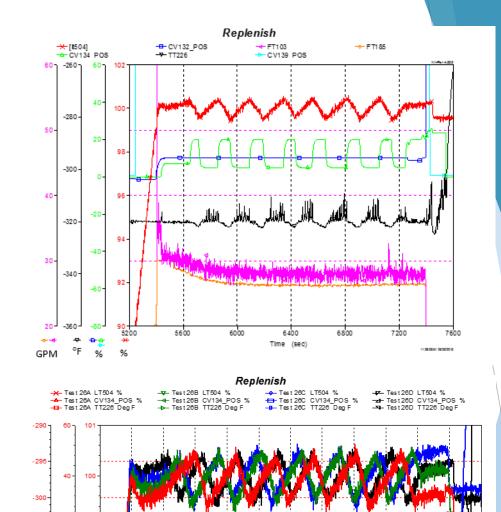

SPLS Simulator


Sequence Testing

- Iteration process on an automated sequence
 - Configurations
 - Main Valve and Bleed Valves
 - Trigger Points
 - ► Temperatures, Pressures, Flow
 - Automation
 - Automated Sequencer
 - Redlines
 - Activation: Storage Tank
- Simulated Propellant Transfer Phases
 - Chilldown
 - Suction Line
 - Discharge Line
 - Vehicle Inlet Valve
 - Ullage Pressure
 - Pump Chilldown
 - Repeatable test shows consistency
 - Small variation due to initial atmospheric temperature conditions.



Cont.


- Slow-Fast Fill
 - Gradual increase in suction pressure
 - Pump speed step increase
 - Closing exhaust valves ("bleed" valves).
 - Reduce flow to vehicle tank
 - > 30 min of fill to max liquid level
 - Application placeholder
- Repeatability
 - ▶ Test 26A, Test 26B, Test 26C and Test 26D

Cont.

Replenish

- Max level threshold = 99.5% 100.5%
 - Exhaust valve and liquid level oscillations
- Exhaust valve management
- Replenish valve fixed
- Flow conditioning
 - Prevent temperature increase
 - Removes warm liquid
 - Fill line up to replenish valve
 - ► Open % exhaust valve on fill line
- Temperature Oscillations
 - Exhaust flow increase/decrease -> temperature oscillations (10 degrees)
- Repeatability
 - Small variation due to atmospheric conditions

20

-20 -

\$ 36 2*

98

400

1200

Time (sec)

1400

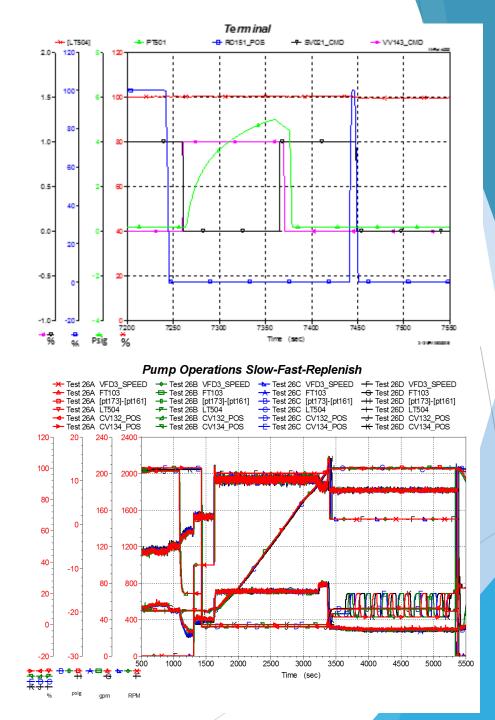
1600

1800

2000

-305

-310


-315

-320

-325-

Cont.

- Terminal
 - Vehicle isolation
 - Ullage pressurization
 - Launch Commit Criteria
 - Pressure
 - Liquid level
 - Engine Valve analogy
- Securing
 - Storage tank isolation
 - Drainage
 - Fill lines
 - Vehicle tank
 - Boil-off
- Repeatability

Testing

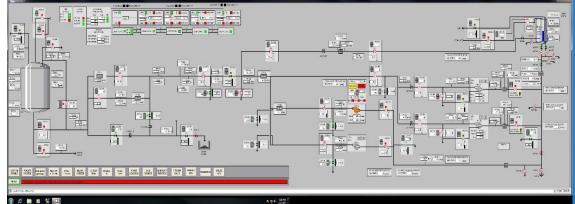
Test Articles

- Layered Composite Insulation for Extreme Conditions (LCX)
 - Thermal Insulation system currently being implemented
- Wireless Surface-Acoustic-Wave (SAW) Sensor
 - Passive wireless liquid level sensor
- ► AFRL Composite Tank
 - Simulate an all composite flight vehicle tank
- Hydrostat Strain and Vibration Mode Testing
 - PTZ health monitoring technologies
- Magnetic Coupled Cryogenic Pump
 - > Enhance reliability and reduce maintenance cost
- Neural Network Piezoelectric (PZT) Based Cryogenic Fluid Phase / State detection
 - Neural network creation and validation for fluid state detection.

LCX on a simulated vehicle tank (left) and piping flange assembly (right) on the SPLS

Magnetic Coupled Cryogenic Pump

Wireless Surface


Acoustic-Wave

(SAW) Sensor

Hydrostat Strain and Vibration Mode Testing

Health Monitoring, Management and System Safing

- Programmable Logic Controller (PLC)
 - DAC, Command & Control, Simulator
- Modeling of fault diagnostics and optimization (NASA AMES)
 - Physics-based models for chilldown, loading operations and health management
 - Two-phase flow modeling for cryogenic operations
- High level intelligent system
 - G2 ISHM NASA Toolkit & Knowledge-Based Autonomous Test Engineer (KATE)
 - Autonomous Sequence Command and Control
 - Health Management and Redline Monitoring
 - ▶ Failure Detection, Mitigation, and Recovery

PLC DAC, Command, and Control System

G2 ISHM NASA Toolkit

Future Implementation

- Commodity Conservation Technologies
 - In-Situ Evaporator Propellant Conditioning
 - External skid Cryogenic Densifier to improve commodity without increasing cost or heat gain.
 - Push back design modifications
 - Commodity reuse
- Modeling and Optimization
 - Physics Model Group and KATE
 - Use models to optimize chilldown and loading phases for commodity conservation
- Health Monitoring, Management and System Safing
 - Autonomous Operations System (AOS)
 - Increase capabilities for parallel cryogenic loading operation with liquid oxygen and liquid methane for a different cryogenic piping system

Propellant Conditioner

Autonomous Operations System (AOS)

Conclusions

- Complete system that simulates a launch cryogenic propellant delivery system
- Reliable repeatable cryogenic sequence has been demonstrated
- Applications: Testbed for support of new technology development
 - Cryogenic propellant transfer environment
 - Support on maturation processes
 - Modeling and physics testbed article
 - Supported technology demonstration for high level intelligent systems
- Future Implementation
 - Improving cryogenic commodity management and utilization
 - Testbed for software of more complicated systems

Questions