Study of He II boiling flow field around a heater

M. Murakamia,b, S. Takadac, M. Nozawad

aU Tsukuba, Japan, bMahasarakham U, Thailand,
cNational Inst. for Fusion Sci., Japan and dNational Inst. of Tech., Akita College, Japan

Contents

1. Experimental Setup:
 Cryostat + PIV System
 Heaters: Planar and Cylindrical Heaters

2. High-Speed Video Flow Visualization

3. PIV Measurement Results
 Transient Record of PIV Velocity \(U_{PIV}(t) \)
 Time–Averaged Flow Velocity \(< U_{PIV} >\):
 Velocity Contour, Velocity–q, Velocity–T
 Velocity Fluctuation \(\Delta U_{PIV} \)
Cryostat and PIV Experiment

L He Cryostat
- with 3 windows of 60 mm dia.
- 0 deg. : Entrance of Laser Sheet
- 90 deg. : Photographing

High Speed Video (Photron):
- 125~1000 fps

Field of View:
- 60 mm (y: horizontal)
- x 45 mm (x: vertical)

Laser (Kanomax):
- 5 W CW YAG
- Light Sheet (<2 mm)

PIV:
- Solid H-D Particles (Neutrally Buoyant)
- Direct Cross-Correlation Method

Significant improvement in Accuracy of calculating the the Average
as compared to the Previous results
Visualisation of Vapour Bubble + Tracer Particles

Noisy Boiling
Planar Heater

Heater (Horizontal)
10 mm (w) x 39 mm (depth)

Photographing time = 0.2 s
Temp. = 1.96 K
$q = 6.64E4 \text{ W/m}^2$
Visualisation of Vapour Bubble + Tracer Particles

Noisy Boiling
Cylindrical Heater

Heater (Horizontal)
5 mm (d) x 50 mm (Length)

Photographing time
= 0.1 s
Temp. = 1.95 K
q = 2.04E4 W/m²
Visualisation of Tracer Particles

Non–Boiling

No Vapour Film

Cylindrical Heater

Imaging time = 0.5 s
Temp. = 1.90 K
$q = 1.03 \times 10^4 \text{ W/m}^2$
Transient Velocity Record $U_{PIV}(t)$, Fluctuation Component

Transient Velocity Record

![Graph showing the transient velocity record $U_{PIV}(t)$ with time in s on the x-axis and velocity in m/s on the y-axis.]

- **Jumping up** Period: Bubble Expansion
- **Gradual Decrease**: Bubble Collapse

$\langle U_{PIV} \rangle$ at $x = 25.3$ mm, $y = 0.0$ mm (Outside the Vapour Area)

Noisy Film Boiling
- **Planar Heater**

$T = 2.00$ K, $q = 4.4e4$ W/m²

$\langle U_{PIV} \rangle = 0.045$ m/s, RMS = 0.147 m/s

Fluctuation Component

<table>
<thead>
<tr>
<th>Boiling Mode</th>
<th>Noisy ($\Delta U_{PIV}/\langle U_{PIV} \rangle$ (%))</th>
<th>Silent</th>
<th>He I</th>
<th>Non-Boiling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>100</td>
<td>≤ 40</td>
<td>≤ 30</td>
<td>≤ 25</td>
</tr>
</tbody>
</table>

Noisy Boiling: Extremely large
Time-Averaged Velocity $\langle U_{PLV} \rangle$: Velocity Vectors and Contour

Noisy Boiling (Planar Heater)
- Max Velocity = 0.19 m/s
- Averaging Time = 2.73 s
- Temp. = 1.96 K
- $q = 6.64E4$ W/m²

Noisy Boiling (Cylindrical Heater)
- Max Velocity = 0.019 m/s
- Averaging Time = 5.07 s
- Temp. = 1.78 K
- $q = 1.23E4$ W/m²
- Reverse Flow: at the lower right of the heater
Time-Averaged Velocity $\langle U_{PIV} \rangle$: Velocity Vectors and Contour

Silent Boiling (Planar Heater)
- Max Velocity = 0.052 m/s
- Averaging Time = 2.73 s
- Temp. = 1.96 K
- $q = 6.64E4$ W/m²

Non-Boiling (Cylindrical Heater)
- Max Velocity = 0.0081 m/s
- Averaging Time = 11.0 s
- Temp. = 1.90 K
- $q = 1.03E4$ W/m²
Time-Averaged Velocity $\langle U_{PIV} \rangle$ vs. Heat Flux q

$\langle U_{PIV} \rangle$: Measured at Immediate Outside of Vapour Bubble Region

Thermal CF Theory : $U_{n,\text{theo}} = q/(\rho ST)$

Planar Heater $\sim 1.8K$

- Noisy Boiling
- Silent Boiling
- Non-Boiling
- Thermal CF Theory

Cylindrical Heater $\sim 1.9K$

- Noisy Boiling
- Silent Boiling
- Non-Boiling
- He I Boiling
- Thermal CF Theory

Non-Boiling : $\langle U_{PIV} \rangle \propto q$, and $\langle U_{n,\text{theo}} \rangle \leftrightarrow$ Interaction with Q Vortices

Noisy : Rapidly Rising Plume induced by Buoyant Bubble (> Silent)

Magnitude of $\langle U_{PIV} \rangle$: Noisy > He I > Silent > Non-Boiling
Temperature Dependence of PIV Velocity: \(\langle U_{\text{PIV}} \rangle / q \)

Noisy Boiling: \(\langle U_{\text{PIV}} \rangle \approx \) Thermal Counterflow Theory near \(T_\lambda \)
induced by Asymmetry of bubble expansion and collapse

Silent Boiling: \(\langle U_{\text{PIV}} \rangle < \) Thermal Counterflow Theory
Effect of Quantized vortices is predominant

He I Boiling: Nothing to do with Superfluidity, Temperature Independent
Conclusion

- Flow field around He II boiling
 - composed of thermal **counterflow** (DC background)
 - alternating flow of Total He II induced by boiling.
 - alternating flow component generated in the whole He II (Noisy)
 only near heater (Silent)

- Noisy Boiling
 - Bubble motion induced **Fluctuating Flow Component**
 is far larger than the **Average velocity**.
 - DC component resulting from the asymmetric bubble motion
 is as large as the theoretical thermal counterflow velocity

- Silent Boiling : Quantized Vortices Dominant PIV Flow Field

- Non–Boiling : nearly **axisymmetric, no gravity effect**

- He I Boiling : rapidly rising buoyancy convective **Plume of He I.**