Synthesis of Bi$_2$Sr$_2$CaCu$_2$O$_x$ oxide precursor from nano-oxides and its relationship with multifilamentary wire transport properties

Yun Zhang1, Stephen Johnson2, Joey Stieha2, Manasi Chaubal2, Ganesh Venugopal2, Andrew T. Hunt2, Justin Schwartz1

1Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, 27695-7907

2nGimat, LLC, 2436 Over Dr, Lexington, KY, 40511
Bi2212/Ag wire before partial-melt processing

\[T_1 = 819^\circ C, \ 2\text{Hrs} \]

\[T_p, \ 0.2\text{ hrs} \]

\[T_{\text{anneal}} = 832^\circ C, \ 48\text{Hrs} \]

\[T_{p-10} \]

\[2.5^\circ C/\text{Hr} \]

\[10^\circ C/\text{H} \]

\[80^\circ C/\text{Hr} \]
Bi2212/Ag Wire after partial-melt processing

- Dense and connected Bi2212 grains
 - Capable of carrying high currents

- Non-superconducting Secondary phases

- Interfilamentary bridges

- Porosity
Challenges on Bi2212 precursors

- Stoichiometry
- Chemical homogeneity
- Grain size
- Carbon content
- Agglomeration (type, size)
- Other trace elements content
- Tap density
- Melting behavior
- Secondary phases distribution (size, content, type)
- Porosity
- Wire fabrication
- Grain alignment/texture
- Large-scale production
Technical Approach

NanoSpray Combustion™ (nGimat, LLC) + Solid-state calcination
Starting materials: Nanosize oxides via NanoSpray Combustion™

Average surface areas range from 9-14 \(\text{m}^2/\text{g} \);
Particle size: 67-104 nm

Multiple oxides
HAADF-STEM/EDS to reveal nm-scale chemical homogeneity

Mass transport diffusion length on 10s of nm scale → ensure homogeneous and synergetic reaction to form Bi2212;
Powder calcination: phase transformation from nano-oxides to Bi2212

Only Bi2212 peaks are detected: >95wt% pure

Fast phase transformation; no need for repeated pulverization and calcination;
Bi2212 precursor powder after full 72-hrs calcination

Soft agglomerations of Bi2212 single grains
Grain size: 3-8 micron;
Carbon dioxide release during full 72-hrs calcination

High surface area of starting nanosize oxides
\(\rightarrow\) CO\(_2\) release starts at very low temperature, 300°C lower than conventional method;
\(\rightarrow\) CO\(_2\) release completes before reaching calcination temperature;
\(\rightarrow\) <100 ppm carbon content in the final Bi2212 precursor;
Relationships between Bi2212 precursor properties and wire transport properties
Three precursor batches and wires
Bi2212/Ag/Ag-0.1wt%Al

Stoichiometry

- Bi$_{2.26}$Sr$_{1.90}$Ca$_{0.90}$Cu$_{1.98}$
- Bi$_{2.15}$Sr$_{1.89}$Ca$_{0.93}$Cu$_{1.95}$
- Bi$_{2.26}$Sr$_{1.89}$Ca$_{0.86}$Cu$_{1.99}$

Wire configuration

- LXA127A, 0.81 mm, FF=15%, 37 x 7
- LXA127B, 0.81 mm, FF=15%, 37 x 7
- LXA147, 0.81 mm, FF=12%, 91 x 7

Stoichiometry measured by XRF, with a tolerance of 0.1 mol%
Transport J_c (4.2 K, 5 T) vs PMP peak temperature (1 bar processing)

50 bar overpressure on LXA147:
$J_c = 3960 \text{ A/mm}^2$ (4.2 K, 5 T)
Data courtesy of J. Jiang, FSU--NHMFL
Phase and carbon content of three precursor batches

Only Bi2212 peaks are detected

Carbon content:

- **LXA 147**: 50 ppm
- **LXA 127A**: 60 ppm
- **LXA 127B**: 90 ppm
Minor impurity phases in precursor - Image analysis on pellets by SEM/EDS

Only minor impurity:
(Ca, Sr)$_2$CuO$_x$(AEC)

AEC Vol% significantly lower than previous studies; AEC size < filament size;

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>LXA127A</th>
<th>LXA127B</th>
<th>LXA147</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEC vol%</td>
<td>0.29</td>
<td>0.03</td>
<td>0.86</td>
</tr>
<tr>
<td>AEC particle size (μm)</td>
<td>2-11</td>
<td>3-5</td>
<td>4-9</td>
</tr>
</tbody>
</table>
Melting behaviors of three green wires

-Thermal analysis

Precursor powder
Stoichiometry Std%: Composition variation

Shallow and wide melting peak \Rightarrow high composition variation \Rightarrow more phase segregations \Rightarrow bad wire performance
Summary

• A novel method combining NanoSpray Combustion™ and solid-state calcination is used to synthesize Bi2212 oxide precursor.

• >99.1 vol% of Bi2212 single crystals with <0.5 mol% composition variation are synthesized.

• Small particle size, high surface area and short diffusion length of the starting materials → rapid and homogeneous phase transformation to Bi2212 + an early and rapid carbon release.

• Carbon content < 60 ppm is required.

• Precursor with Bi$_{2.26}$Sr$_{1.89}$Ca$_{0.86}$Cu$_{1.99}$ (LXA147) and 1.51 mol% composition variation → State-of-art wire transport current density: 2520 A/mm2 (4.2 K, 5 T, 1 bar) and 3960 A/mm2 (4.2 K, 5 T, 50 bar)
Acknowledgements

• This study is funded through DOE-STTR (DE-SC0009705).
• The authors are grateful to Leszek Motowidlo and Supramagnetics Inc for manufacturing the multifilamentary wires for this study.
• The authors acknowledge the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation.
• The authors also want to thank Jenna Pilato and Kyle Malone for assistance with this study.
THANK YOU!

YUN ZHANG