

# Exergy analysis of an LNG boil-off gas reliquefaction system

#### SARUN KUMAR K

(sarunkumark@gmail.com)

#### PARTHASARATHI GHOSH

(s.partha.ghosh@gmail.com)

#### KANCHAN CHOWDHURY

(chowdhury.kanchan@gmail.com)

Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur, India



### Introduction

- LNG (Liquefied Natural Gas) is mainly produced for transportation purposes.
- LNG is at atmospheric pressure and normal boiling point (111 K) during its storage and transportation.
- Heat in-leak into the storage tanks and pipelines generates boil-off gas (BOG).
- BOG is reliquefied because of economic, environment and safety reasons.
- In LNG carrier ship reverse Brayton cycle (RBC) is used to reliquefy BOG.
- RBC is compact and safe for offshore applications.





## Dahej LNG Terminal, Gujarat, India

Dahej LNG regasification terminal



LNG carrier ship at Dahej Terminal





### Literature review

| Author/Company                      | Refrig.<br>Cycle | Pressure range of Refrigeration cycle (bar (a)) | BOG<br>Compress<br>or Exit<br>pressure | No. of HX (excluding intercoolers & aftercoolers) |
|-------------------------------------|------------------|-------------------------------------------------|----------------------------------------|---------------------------------------------------|
| Tractebel Gas Eng.                  | RBC              |                                                 | 6                                      | 1                                                 |
| Mark 1. Hamworthy<br>Gas System [9] | RBC              | 58 – 14.5                                       | 4.5                                    | 1                                                 |
| Ecorel, Cryostar [2]                | RBC              | 47 – 9.5                                        | 4.8                                    | 2                                                 |
| Sayyandi et al. [ 15]               | Claude<br>cycle  | 81-14                                           |                                        | 4                                                 |
| Shin et al. [18]                    | RBC              | 46 - 13                                         | 7.2                                    | 3                                                 |



### Technological gaps

- Complete reliquefaction of BOG (91 % methane, 9 % nitrogen by mole fraction)
  - Higher power requirement
- Partial reliquefaction with nitrogen removal
  - Lesser power requirement
  - Methods for minimization of both quantity of vent gas as well as the quantity of methane in vent gas needs to be done.
- The configurations and process parameters practiced by companies are different.
- General guidelines backed by thermodynamics are needed for choice of appropriate configuration and operating and geometric parameters of reliquefaction systems.



## Objective

- An efficient reliquefaction system implies
  - reduction of power input,
  - maximisation of reliquefaction output and,
  - minimisation of methane in the vent gas
- The objective of this work is to perform exergy analysis on a simple reverse Brayton cycle based LNG boil-off gas reliquefaction system to understand the effects of geometric parameters of heat exchanger and BOG compressor exit pressure on its performance.



### Methodology

#### Thermodynamic cycle



| Fixed simulation conditions        |                                                         |  |  |  |
|------------------------------------|---------------------------------------------------------|--|--|--|
| N <sub>2</sub> cycle high pressure | 50 bar(a)                                               |  |  |  |
| N <sub>2</sub> cycle low pressure  | 10 bar(a)                                               |  |  |  |
| Mass flow rate of nitrogen         | 36 kg/s                                                 |  |  |  |
| Condition of BOG vapour from tank  | 133 K; 1.073 bar(a); 91 % methane, 9 % nitrogen (mol %) |  |  |  |
| Mass flow rate of BOG              | 2 kg/s                                                  |  |  |  |



# Methodology (contd.)

Nondimensionalisation of UA of heat exchangers

Nondimensional UA = 
$$\frac{(UA)_{eff}}{\dot{m}_{BOG}c_{p,BOG}}$$
$$(UA)_{eff} = F \times (UA)_{design}$$
$$(UA)_{design} = \frac{1}{(hA)_h} + \frac{x}{kA} + \frac{1}{(hA)_c}$$
$$\dot{Q} = (UA)_{eff} (LMTD)$$

- •Process simulator: Aspen Hysys 8.6®
- •Fluid package for generating thermo-physical properties of fluids: The Peng-Robinson equation of state.



# Methodology (contd.)

 The exergy efficiency of the system is calculated by considering only physical exergy

•Net exergy output: 
$$Ex_{output} = \dot{m}_F ex_F - \dot{m}_A ex_A$$

•Net exergy input: 
$$Ex_{input} = \dot{W}_{NET} = \dot{W}_{N_2,COMP} - \dot{W}_{EXP} + \dot{W}_{BOG,COMP}$$

•Exergy efficiency: 
$$\eta_{ex} = \frac{Ex_{ouput}}{Ex_{input}} = \frac{\dot{m}_F ex_F - \dot{m}_A ex_A}{\dot{W}_{NET}}$$

- Loss of chemical exergy at the vent represents less methane content
- •The specific chemical exergy (kJ/mole)  $ex_{ch} = \sum x_k ex_{ch}^0 + \sum x_k \ln(x_k)$
- •The total chemical exergy at a point  $Ex_{ch} = ex_{ch} \times MF$



#### RESULTS AND DISCUSSIONS

#### Physical exergy destruction in components of system





Effect of heat transfer area of heat exchangers on reliquefaction system performance





# Effect of heat transfer area of heat exchangers on performance of system

#### Exergy destruction in components



#### Temperature profile of BOG condenser





# Effect of heat transfer area of heat exchangers on vent gas conditions



Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur



Effect of pressure drop in heat exchangers on system performance





#### Effect of BOG compressor exit pressure on system performance







### CONCLUSIONS

- Process heat exchanger has to be significantly bigger than the BOG condenser.
- UA of PHX above 140 minimizes the vent gas and its methane content.
- System is more sensitive to pressure drop when the UA of PHX is greater than 100
- With increasing pressure drops system performance deteriorates and the optimum UA of PHX reduces.
- For fixed UAs of heat exchangers, an optimum discharge pressure of BOG compressor gives maximum physical exergy efficiency.



# Thank You