

PREDICTION OF TWO-PHASE PRESSURE DROP IN HEAT EXCHANGER FOR MIXED REFRIGERANT JOULE-THOMSON CRYOCOOLER

MOTIVATION

Recuperative heat exchanger governs the overall performance of mixed refrigerant Joule–Thomson (MR J–T) cryocooler. Need of accurate predictive tools for pressure drop to design the heat exchanger for the efficient operation of the cryocooler Limited experimental data is available, related to pressure drop of mixed refrigerants of nitrogen-hydrocarbons at cryogenic

- temperatures.
- working fluids, mass velocities, pressures and channel diameters.

OBJECTIVE

To evaluate the existing empirical correlations for prediction of two-phase frictional pressure drop in the recuperative heat exchanger for MR J-T cryocooler.

TWO-PHASE FRICTIONAL PRESSURE DROP CORRELATIONS

Total pressure drop $\Delta P_{total} = \Delta P_{static} + \Delta P_{mom} + \Delta P_{frict}$

Homogeneous Flow Model (HFM)

Two-phase frictional pressure drop, ΔP_{frict}

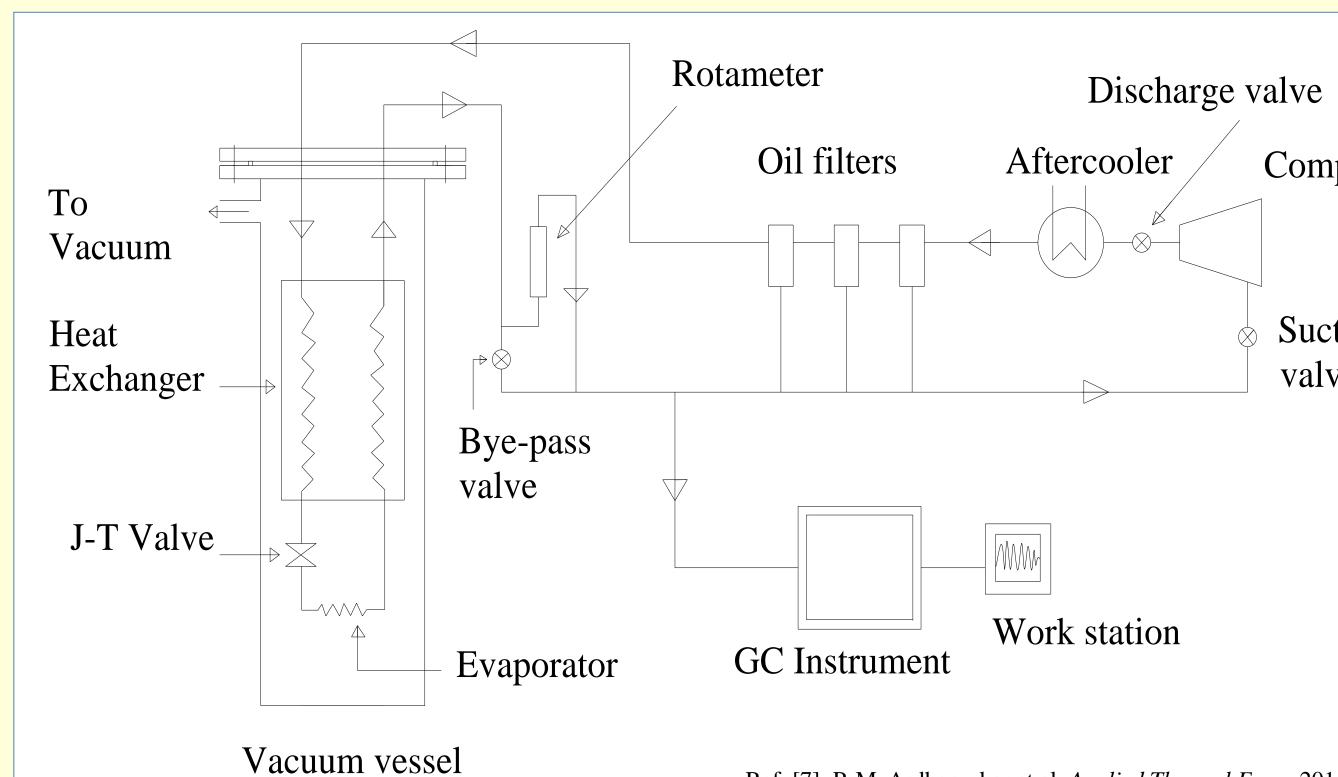
$$\Delta P_{frict} = 4 f_{tp} \frac{L}{d_h} \frac{G^2}{2\rho_{tp}}$$

 $\operatorname{Re}_{tn} = \frac{Gd_h}{I}$

 $\left| \frac{1}{x} = \frac{x}{x} + \frac{(1-x)}{x} \right|$

 ho_{tp} ho_{g} ho_{f}

 μ_{tp}


where f_{tp} is a two-phase friction factor, G is mass velocity, L is length, d_h is hydraulic diameter, and ρ_{tp} is two-phase density.

$$f_{tp} = \frac{16}{\text{Re}_{tp}}$$
 : $\text{Re}_{tp} \le 2000$
 $f_{tp} = 0.079 \,\text{Re}_{tp}^{-0.25}$: $\text{Re}_{tp} > 2000$

$$J_{tp} = 0.079 \text{ Ke}_{tp}$$
 . $\text{Ke}_{tp} >$

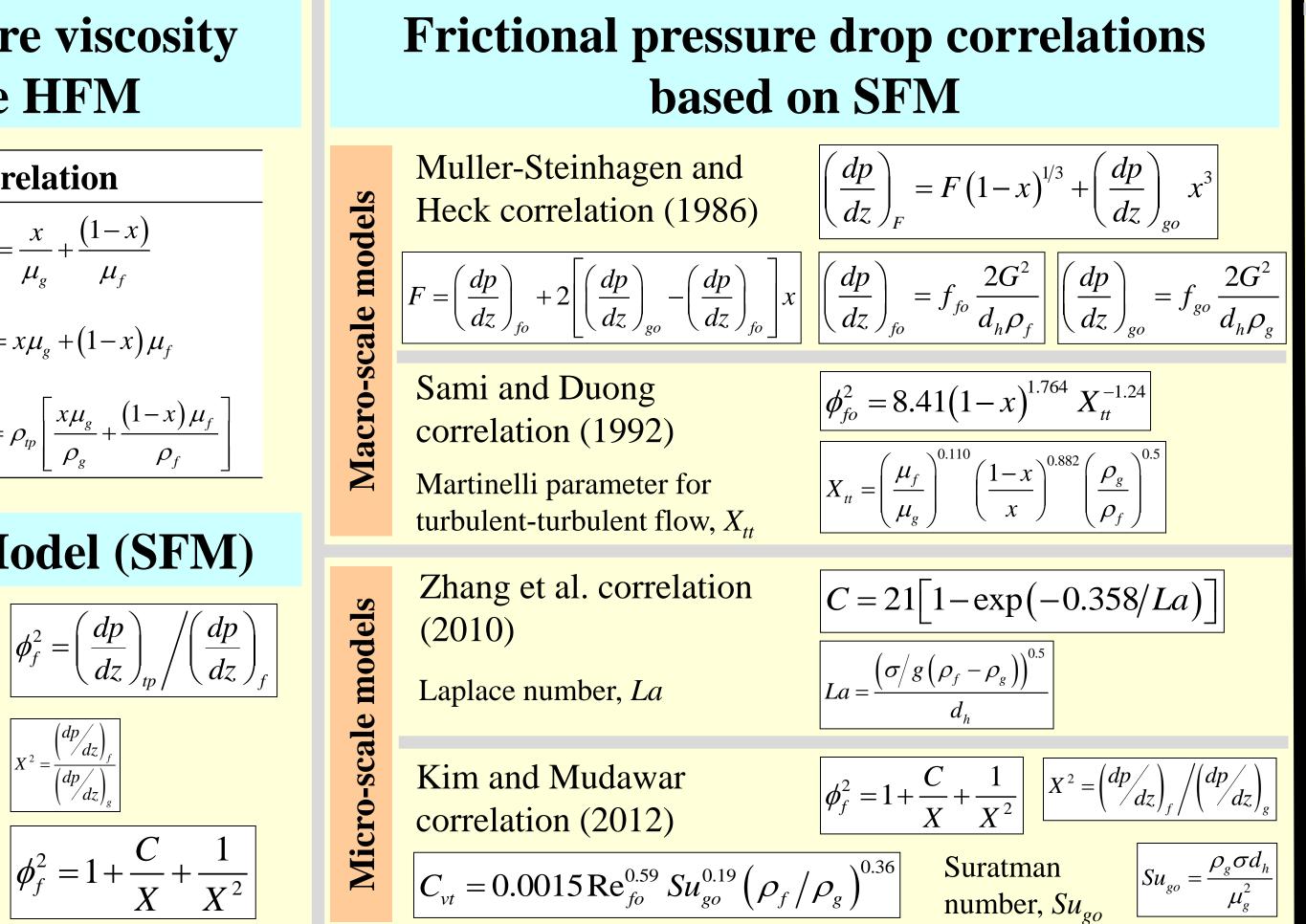
Two-phase Reynolds number, Re_{tp}

Two-phase mixture density, ρ_{tp}

Author(s)	Corr
McAdams et al. [11]	$\frac{1}{\mu_{tp}} =$
Cicchitti et al. [12]	$\mu_{tp} = 2$
Dukler et al. [13]	$\mu_{tp} = \mu$

Separated Flow Model (SFM)

Two-phase frictional multiplier, ϕ_f


Lockhart-Martinelli correlation [14]

where coefficient *C* varies between 5 to 20 depending on flow regime $\phi_f^2 = 1 + \frac{C}{X} + \frac{1}{X^2}$

P. M. Ardhapurkar^{1,2}, M. D. Atrey¹

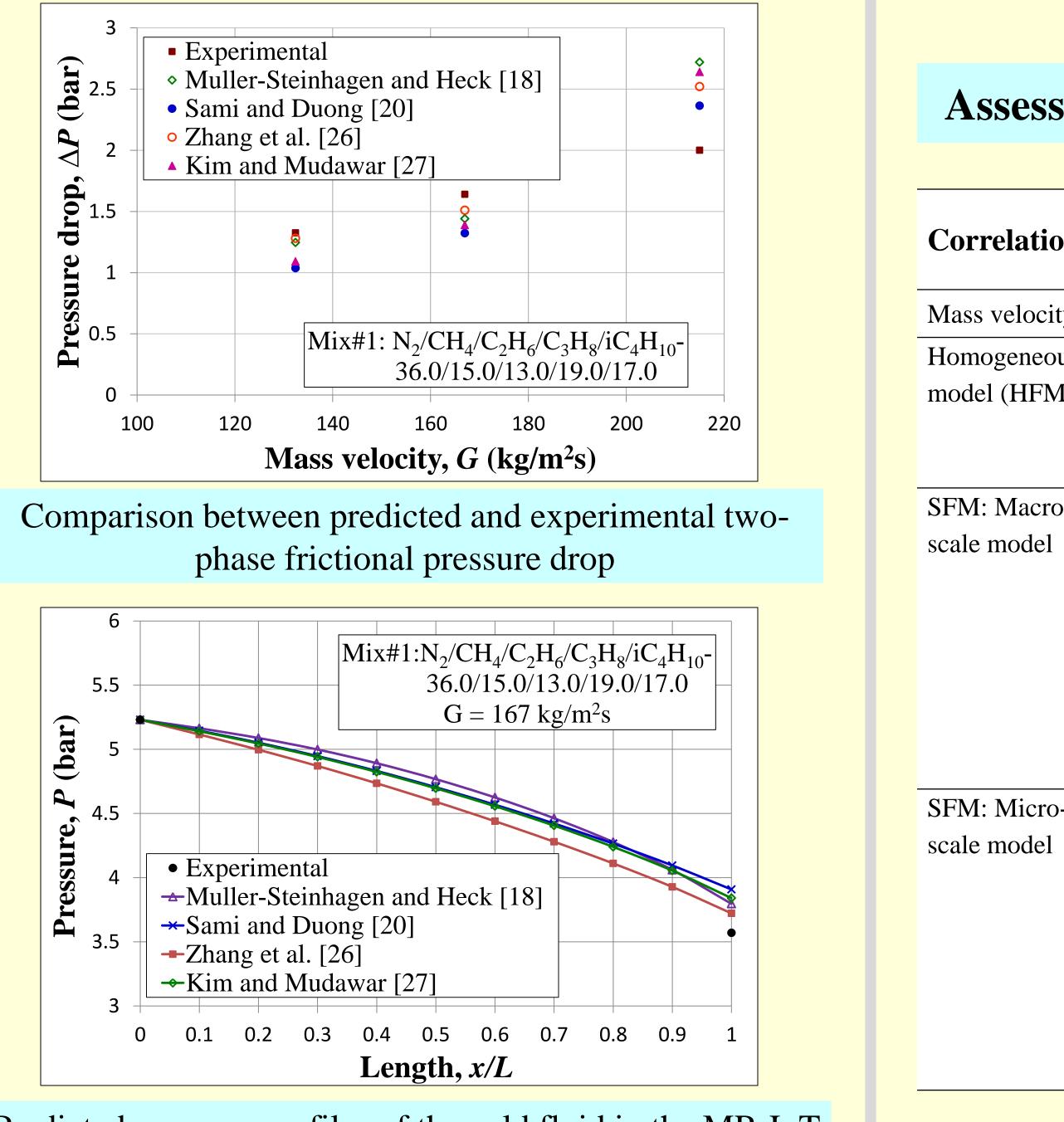
¹Indian Institute of Technology Bombay, Mumbai, Maharashtra, India 400 076 ²S. S. G. M. College of Engineering, Shegaon, Maharashtra, India 444 203

There is no generalized correlation for two-phase frictional pressure drop in the literature, which is applicable to a wide range of

Helically coiled tube-in-tube heat exchanger

Compressor

Suction valve


Specifications of Heat Exchanger [7]

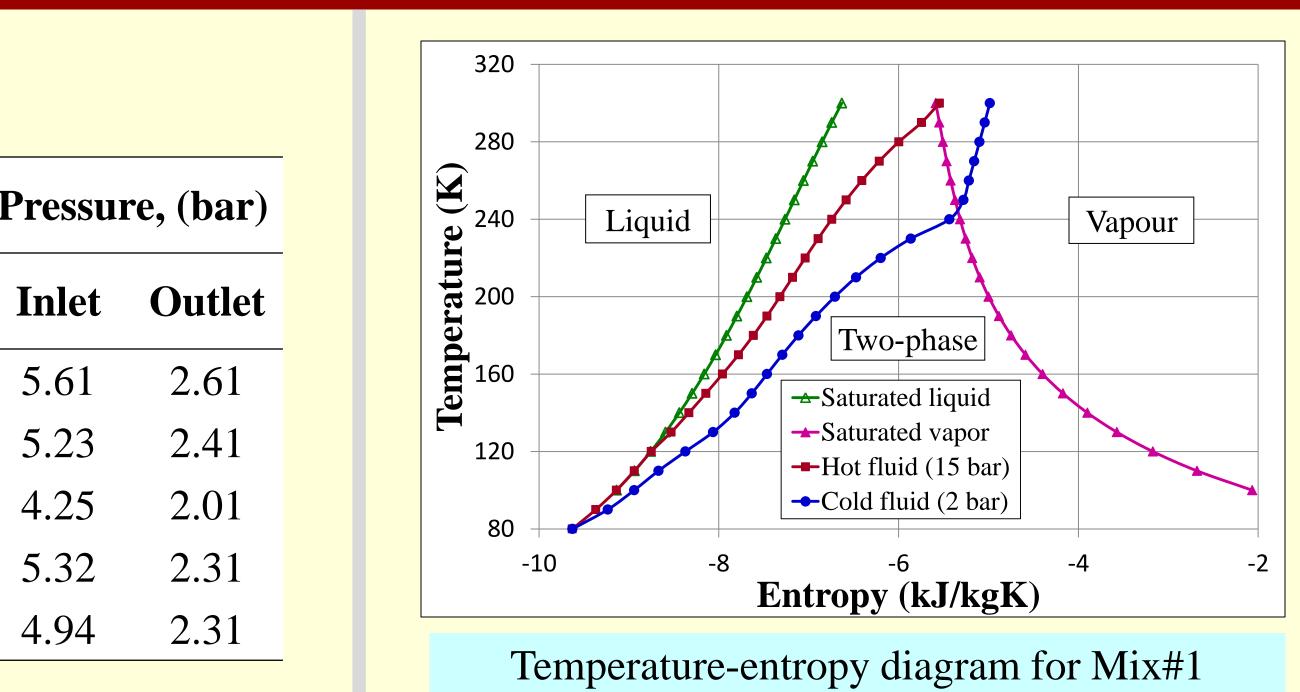
Parameter		Value			
Inner tube	ID (mm)	4.83			
	OD (mm)	6.35			
Outer tube	ID (mm)	7.89			
	OD (mm)	9.52			
Length of heat exchanger (m) 15					
Coil diamet	200				

RESULTS AND DISCUSSION

Composition	Mass flux, G (kg/m ² s)	Temperature, (K) P		
		Inlet	Outlet	-
36.0/15.0/13.0/19.0/17.0	215	100.2	293.5	
	167	108.8	293.8	
	132	112.7	294.7	
15.5/31.0/16.5/21.0/16.0	151	119.1	297.6	
	146	125.4	300.1	
-	36.0/15.0/13.0/19.0/17.0	Compositionflux, G (kg/m²s)36.0/15.0/13.0/19.0/17.021516716713213215.5/31.0/16.5/21.0/16.0151	Composition flux, G (kg/m²s) Inlet 36.0/15.0/13.0/19.0/17.0 215 100.2 167 108.8 132 112.7 15.5/31.0/16.5/21.0/16.0 151 119.1	Compositionflux, G (kg/m²s)InletOutlet36.0/15.0/13.0/19.0/17.0215100.2293.5167108.8293.8132112.7294.715.5/31.0/16.5/21.0/16.0151119.1

Experimental conditions

Predicted pressure profiles of the cold fluid in the MR J–T heat exchanger


CONCLUSIONS

- ✓ Experiments are carried out to measure two-phase pressure drop in the evaporating stream of MR J-T heat exchanger for two different mixture compositions.
- Extensive evaluation of the existing two-phase frictional pressure drop correlations is presented. The Zhang et al. [26] and Kim and Mudawar [27] correlation which are developed for micro-channels based on SFM give the best predictions of the pressure drop data within 30 % error limit among 15 different correlations assessed.

CEC/ICMC-2015

Tucson, Arizona, USA, June 28 – July 2, 2015 Track: CEC-03

Program ID: C2PoJ, *Joule–Thomson Coolers*

Assessment of existing two-phase pressure drop correlations

ion	↓ –	Average Absolute Deviation (AAD), (%)				
			Mix#1		Mix	x#2
city, (ity, $G (\text{kg/m}^2\text{s}) \longrightarrow$		167	132	146	151
ous M)	McAdams et al. [11]	21.4	44.4	40.2	41.7	48.6
	Cicchitti et al. [12]	126.8	23.1	35.8	10.4	13.2
	Dukler et al.[13]	21.5	44.3	42.0	47.2	52.4
ro- 21	Lockhart-Martinelli [14]	143.2	102.0	116.8	42.2	15.2
	Friedel [16]	62.4	7.9	15.9	8.4	11.1
	Gronnerud [17]	125.4	59.8	82.6	46.8	28.1
	Muller-Steinhagen and Heck [18]	31.6	13.6	6.0	7.2	24.8
	Chisholm [19]	143.6	160.4	143.7	108.6	69.5
	Sami and Duong [20]	14.2	20.4	21.7	34.1	40.5
ro- 21	Mishima and Hibiki [22]	103.5	37.5	46.4	1.8	14.8
	Yu et al. [23]	76.0	82.3	80.8	82.9	84.0
	Lee and Mudawar [24]	135.9	38.7	26.3	11.9	4.3
	Li and Wu [25]	134.7	45.4	55.2	12.1	15.0
	Zhang et al. [26]	22.0	9.2	3.2	27.6	27.6
	Kim and Mudawar [27]	27.5	16.3	17.6	20.8	29.5