Cool-down acceleration of G-M cryocoolers with thermal oscillations passively damped by helium

Robert Webber Jean Delmas

HYPRES, Inc.

Outline

□ Interest in thermal stability and rapid cool-down

Given SHI's helium thermal damper

Cool-down with damper and calculations

□ Modified damper gas management and results

□ Additional thermal anchoring

Superconducting electronic systems

- Hypres and others have developed turn-key S.E. electronic systems:
 - Josephson Junction Primary Voltage Standards
 - Digital RF receivers

Niobium JJ Ideal Cryo-requirements

Stable temperature

 Critical currents of Junctions and bias points are temperature sensitive

Fast cool-down

- Quick temperature excursion through superconducting / normal transition
- Extraneous magnetic flux can lower the critical current of random junctions in a circuit, affecting performance purge by heating to T_c

SHI RDK-101DP

Damper/No damper Cool-downs

- "Deflux" excursion cool-down much longer with damper
- Buffer pressure follows dropping He pot temperature
- Calculated cool-down agrees reasonably well with measurement

Dominance of heat from capillary flow

Calculated cool-down

Energy balance

 $\dot{Q}_{ref} = m_p C \dot{T}_p + \Delta h \dot{m}$

 Mass in He pot known function of pressure, so defining temperature

$$m_p = M - \frac{M_{He}V_b}{RT_{amb}} \{P_p + \Delta P_i\}$$

Low charge pressure cool-downs

- Lower charge pressure results in *longer* cool-down time
- Total mass flow through capillary is *increased* and peaks at lower temperature
- Rapidly changing density near critical point

Damping effectiveness vs charge pressure

HYPRES

Modifications to He damper

- Modifications work passively
 - Spring-loaded non-return valves set to ~1/3 charge pressure (0.7 bar)
 - Additional thermal linkage at lower temperature

Cool-down with 0.7 MPa c.p. NRVs

- Measured cool-down is dramatically faster than without valves.... WHY??.....Vapor-lock?.....Thin film of liquid?
- Calculated time to 4 K is no different, in spite of 55% reduction in total capillary flow ---- heat load shifted to lower temperatures

Addition of 7K thermal intercept to capillary

- Even faster, approaching no-damper time
- Still faster than calculated

Conclusion

- Cool-down from 10K is retarded by warm He injected into He pot
- Reduction of charge pressure *increases* cool-down time
- In-line relief valves passively restrict buffer-pot mass flow, with dramatic reduction in cool-down time
- No reduction in damping
- Additional inter-stage thermal intercept reduces time to nearly twice un-damped system

Sumitomo SRDK-101D-A11

HYPRES

Parameters	Value	
Heat Load (Manufacturer Spec)	0.1 W at 4.2 K and 5 W at 60K	
Heat Load (Measured)	0.2 W at 4.2 K and 6 W at 53K	
Input Power	1.3 kW, 100±10 V (60 Hz)	
Compressor Size	$0.45 \times 0.385 \times 0.40 \text{ m}^3$	
Cold Head Dimension	$0.13 \times 0.226 \times 0.442 \text{ m}^3$	
Compressor Weight	42 kg	Binenga
Cold Head Weight	7.2 kg	0 0

Temperature Oscillations of Sumitomo Cooler

