
Numerical Methods of Longitudinal Beam Dynamics 

1 
iCSC2015, Helga Timko, CERN 

Simulation of Longitudinal 
Beam Dynamics Problems in Synchrotrons 

Lecture 1 

Numerical Methods of  

Longitudinal Beam Dynamics 

 

Helga Timko 

CERN, BE-RF 

 

 

Inverted CERN School of Computing, 23-24 February 2015 



Numerical Methods of Longitudinal Beam Dynamics 

2 
iCSC2015, Helga Timko, CERN 

Contents 
 
 Introduction 

 What is longitudinal beam dynamics (LBD)? 

 Building blocks of numerical LBD 

 Equations of motion 

 RF manipulations 

 Collective effects 

 Low power-level RF (LLRF) loops 

 Discussion about end-to-end simulations 

 Take-home messages: given by you! 



Numerical Methods of Longitudinal Beam Dynamics 

3 
iCSC2015, Helga Timko, CERN 

INTRODUCTION 
Why model longitudinal beam dynamics? 
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What is a beam? 

 Particle beam = collection of particles, usually confined in 
space 

 In accelerator physics we use mainly charged beams, which 
can be manipulated via electromagnetic fields 

 Beam particles are selected to have the same charge state; 
particles with the same q/m move in the same way (Lorentz): 

𝒅

𝒅𝒕
𝜸𝒗 =

𝒒

𝒎
𝑬 + 𝒗 × 𝑩   (𝟏) 

 A beam is essentially a plasma 

 In a plasma, spatial confinement is ensured by quasi-neutrality 
(many species, global charge is zero) and boundary conditions 

 In a beam, spatial confinement is ensured by the RF potential in 
the cavities (longitudinal) and magnetic focussing (transverse) 
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Beams at CERN 

 Various beams are being used at CERN for different purposes 

 LHC and injectors: p (H+), 208Pb54+, 40Ar11+ 

 ISOLDE: large range of radioactive isotopes 

 AD and ELENA decelerators: anti-protons, anti-hydrogen 

 … 

 LHC proton beam production 

 Source  Linac2 (Linac4)  PSB  PS  SPS  LHC 

 Extraction kinetic energies or momenta: 50 MeV (160 MeV)  
1.4 GeV (2 GeV)  26 GeV/c  450 GeV/c  7 TeV 

 LHC ion beam production 

 Source  Linac3  LEIR  PS  SPS  LHC 
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The CERN Accelerator Complex 
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CERN Beams Department 

 A large range of activities: 

 Accelerator operation, production & delivery of particle beams 

 Controls infrastructure for all accelerators 

 Accelerator systems 

 Machine and detector alignment 

 Hadron sources 

 Beam instrumentation  

 Accelerator physics studies and teaching activities 
 CERN Accelerator School (CAS): http://cas.web.cern.ch/cas/ 

http://cas.web.cern.ch/cas/
http://cas.web.cern.ch/cas/
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Acceleration and synchrotrons 

 Lorentz equation  electric field accelerates, magnetic field 
changes the direction of velocity 

 Two ways to accelerate particles 

 Linacs: no bending magnets needed, but single passage 
through each cavity 

 Circular accelerators: repetitive passage through the cavities, 
but strong magnets are required to close the trajectory 
 LHC: 8 cavities/beam  accelerate; 1232 dipole magnets  bend with 

up to 8.33 T; 392 quadrupole magnets  focus transversely 

 We’ll focus on synchrotrons 

 Magnetic field strength synchronised with the beam energy 

 Cavities’ RF frequency and phase is synchronised as well 
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Acceleration 

 Using DC voltage 

 Linear potential, uniform 
electric field 

 Using RF voltage 

 Need to arrive in the right 
RF phase to gain energy 
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A simple linear accelerator 

Van der Graaff generator at the 

Boston Museum of Science 
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A synchrotron: the LHC (1) 

 All accelerating 
cavities are placed 
in Point 4 

 Straight section 
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A synchrotron: the LHC (2) 

 Dipole and quadru-
pole magnets are 
placed all along 

 So-called arcs 

dipole 
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Longitudinal beam dynamics 

 Longitudinal = along, transverse = across the beam pipe 

 Why do we care about the beam evolution over time? 

 To design our machines 

 To control/manipulate the beam (splitting, shaping…) 
 PSB: 1 bunch (800 ns) in each of 4 rings, LHC: 2808 bunches (1.2 ns) 

 To ensure a certain beam quality and safe operation 

 Beam instabilities can lead to  
 Uncontrolled emittance (beam size) blow-up  deterioration of beam 

quality, loss of luminosity 

 Beam losses  loss of luminosity and radiation/safety issue (full LHC 
beam stores 350 MJ, can drill a hole into the beam pipe!) 

 Complex machines, numerical models needed! 
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EQUATIONS OF MOTION 
Motion of beam particles in the RF potential 
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Synchrotron model 

 RF stations 

 Contain cavities (may operate at 
different harmonics) 

 Keep the beam bundled 

 Described via energy kicks 

 Magnetic arcs 

 Magnetic field to keep trajectory 

 RF synchronised to B-field 

 Arrival time to next station 
described via phase drifts 

 We’ll focus on single-station 
machines (OK for protons/ions) 
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The concept of slippage (1) 

 Ideally, all particles would exactly have the synchronous 
energy, arrive at the same time to the accelerating cavity, and 
thus see the same, synchronous RF phase 

 The ‘dynamics’ would be quite simple 

 But this is actually not a stable system (see collective effects) 

 In reality, particles can have a slight energy/momentum offset 

 Typical relative momentum offset, typically 𝜹 = 𝓸 𝟏𝟎−𝟑 − 𝟏𝟎−𝟒  

 For the synchronous particle, one turn takes 𝑻𝟎 =
𝟐𝝅𝑹𝒔

𝜷𝒔𝒄
, where 

𝟐𝝅𝑹𝒔 is the length of the synchronous orbit and 𝜷𝒔 =
𝒗𝒔

𝒄
 

 For an off-momentum particle, one turn takes 𝑻 =
𝟐𝝅𝑹

𝜷𝒄
, since the 

particle has a different velocity and also a different orbit 
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Slippage 

 By definition, the 
synchronous particle always 
returns after one turn to 
exactly the same position 

 Note that we are interested 
in deviations from the 
synchronous particle, 
described in phase space 

 Coordinate system fixed to 
the synchronous particle 

 Non-inertial 

 Possible change of 
coordinate system each 
turn 
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The concept of slippage (2) 

 If 𝜹 > 𝟎 ⇒ the particle travels faster, 𝜹 < 𝟎 ⇒ travels slower 
than the synchronous particle 

 Intuitively, the effect is stronger for low energies and becomes 
negligible in the ultra-relativistic limit 𝜷 → 𝟏 

 How the orbit changes, depends on the magnetic lattice 
design of the machine, which determines the so-called 

transition gamma 𝜸𝑻 (or transition energy 𝜸𝑻𝒎𝒄𝟐) 
𝟏

𝜸𝑻
𝟐 ≡

𝟏

𝑹𝒔

𝒅𝑹

𝒅𝜹
 

 Below transition, 𝜸 < 𝜸𝑻, speed ‘wins’  higher energy 

particles have higher rev. frequency 𝝎 ≡
𝜷𝒄

𝑹
>

𝜷𝒔𝒄

𝑹𝒔
≡ 𝝎𝟎 for 𝜹 > 𝟎 

 Above transition, 𝜸 > 𝜸𝑻, orbit ‘wins’  higher energy particles 
have lower rev. frequency 𝝎 < 𝝎𝟎 for 𝜹 > 𝟎 
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The concept of slippage (3) 

 Hence, the associated ‘frequency slippage’ depends both on 
the machine (𝜸𝑻) and the momentum offset (𝛿): 

∆𝝎

𝝎𝟎
≡ −𝜼 𝜹 𝜹 ≈ − 𝜼𝟎 + 𝜼𝟏𝜹 + 𝜼𝟐𝜹

𝟐 +⋯ 𝜹    (𝟐) 

 𝜼 𝜹  is the so-called slippage factor 

 𝜼𝒊 are machine-dependent constants 
 Depend on 𝜷𝒔, 𝜸𝒔, and ‘momentum compaction factors’ 𝜶𝒊 

 Often the first approximation is sufficient, 

∆𝝎

𝝎𝟎
≈ −𝜼𝟎𝜹 = −

𝟏

𝜸𝑻
𝟐 −

𝟏

𝜸𝒔
𝟐 𝜹     (𝟑) 
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Energy EOM: ‘kick’ 

 A particle passing the cavity 
receives an energy kick* of 

𝑬𝒏+𝟏 = 𝑬𝒏 + 𝒆𝑽𝒏 𝐬𝐢𝐧𝝋𝒏    (𝟒) 
where 𝝋𝒏 is the RF phase when the 
particle crosses the cavity 

 Relative to the synchronous 
particle, the energy offset is 

∆𝑬𝒏+𝟏= ∆𝑬𝒏 + 𝒆𝑽𝒏 𝐬𝐢𝐧𝝋𝒏 − 
− 𝑬𝒔

𝒏+𝟏 − 𝑬𝒔
𝒏    (𝟓) 

* N.B. the sinusoidal term is to be 
replaced by a sum of sinusoids in the 
case of multiple RF harmonics 

 

RF acceleration synchro-
nous w/ magnetic ramp 

RF acceleration 
within the bunch 

Radio-frequency (RF) cavity voltage 

Condition for RF acceleration: 

𝒆𝑽𝒏 𝒔𝒊𝒏𝝋𝒔
𝒏 = 𝑬𝒔

𝒏+𝟏 − 𝑬𝒔
𝒏 > 𝟎 

∴  𝝋𝒔 ∈ (𝟎, 𝝅) 

Stationary energy: 𝝋𝒔 = 𝟎 or 𝝅 
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Phase EOM: ‘drift’ 

 Assume a particle that has a time delay and energy offset 
w.r.t. to the synchronous particle (∆𝒕𝒏, ∆𝑬𝒏) 

 The first update the energy ∆𝑬𝒏→ ∆𝑬𝒏+𝟏 according to Eq. 5 

 Next turn, the particle crosses the cavity with a time delay of 

∆𝒕𝒏+𝟏= ∆𝒕𝒏 +
𝟐𝝅

𝝎
−
𝟐𝝅

𝝎𝒔
    (𝟔) 

 The corresponding RF phase is 

∆𝝋𝒏+𝟏=
𝒇𝑹𝑭

𝒏+𝟏

𝒇𝑹𝑭
𝒏 ∆𝝋𝒏 + 𝟐𝝅𝒉

𝟏

𝟏 − 𝜼(𝜹𝒏+𝟏)𝜹𝒏+𝟏 − 𝟏     (𝟕) 

 Note that Eqs. 5 & 7 for kick and drift are exact 

 Usual approximation: ∆𝝋𝒏+𝟏=
𝒇𝑹𝑭

𝒏+𝟏

𝒇𝑹𝑭
𝒏 ∆𝝋𝒏 − 𝟐𝝅𝒉𝜼𝟎𝜹

𝒏+𝟏    (𝟖) 
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Synchronous phase 

 Small amplitude oscillations 

𝟓 ⟺ ∆𝑬 =
𝒆𝑽𝝎𝟎

𝟐𝝅
𝐬𝐢𝐧𝝋 − 𝐬𝐢𝐧𝝋𝒔  

   ∆𝑬 ≈
𝒆𝑽𝝎𝟎 𝐜𝐨𝐬 𝝋𝒔

𝟐𝝅
∆𝝋  

 𝟖  ⟺ ∆𝝋 =
𝒉𝜼𝟎𝝎𝟎

𝜷𝟐𝑬
𝚫𝑬  

 Second derivative (same for ∆𝝋): 

∆𝑬 =
𝒆𝑽𝒉𝜼𝟎 𝐜𝐨𝐬𝝋𝒔

𝟐𝝅𝜷𝟐𝑬
𝝎𝟎

𝟐∆𝑬 

 Simple harm. osc. if 𝜼𝟎 𝐜𝐨𝐬𝝋𝒔 < 𝟎 

 Synchrotron oscillation frequency 

𝝎𝑠 ≡
𝒆𝑽𝒉𝜼𝟎 𝐜𝐨𝐬𝝋𝒔

𝟐𝝅𝜷𝟐𝑬
𝝎0 

Synchronous phase of RF voltage 

Condition for longitudinal 

stability, i.e. beam to stay 

bunched/bundled: 

∴  𝝋𝒔 ∈  𝟎,
𝝅

𝟐
  if 𝜸 < 𝜸𝑻 

∴  𝝋𝒔 ∈  
𝝅

𝟐
, 𝟎   if 𝜸 < 𝜸𝑻 
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Some terminology… 

 The RF potential that 
confines the beam 
determines the ‘bucket’ 
 Contour: ‘separatrix’ 

 The beam that is inside a 
bucket is a ‘bunch’ 

 The complete beam we call a 
‘bunch train’ 
 Can consist of ‘batches’ with 

larger spacing in-between 
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RF MANIPULATIONS 
A few examples of how to shape bunches 
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LHC Point 4 – RF acceleration, 2005 

Former LEP ALEPH 

detector cavern 

Empty tunnel 

waiting for cavities 
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LHC Point 4 – RF acceleration, 2012 

Controls 

Faraday cages 

Klystrons (RF power generation) 

Cavities (under the concrete) 

HV bunkers 

Cryogenic station (behind) 
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Bunch splitting 

 Bunch splitting is used several 
times in the PS, to increase the 
number of bunches and shorten 
their bunch length 
 PS bucket: 100 ns, LHC bucket: 2.5 ns! 

 How it’s done: add slowly 
(adiabatically) a higher-harmonic 
component to the RF potential 

 Numerical challenge: what is a 
bucket in this case? In multi-RF, 
what are the synchronous 
phase(s)? 

PS bunch splitting  

(measured via tomography) 
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Bunch merging 

 The opposite of bunch splitting 
 Used in the PS ‘BCMS’ beam production scheme to produce brighter 

beams for the LHC 

 BCMS = batch compression, merging, and splitting 

standard BCMS 

time 

buckets 
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Phase-space shaping 

 Phase-space ‘painting’ 
through intentional 
filamentation (mixing) 
 Mismatched bunch 

 Hollow bunches to produce 
a flat line density 
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Bunch rotation in phase space 

 Through a sudden (non-adiabatic) voltage increase, the bunch 
starts to rotate in phase space 

 A bunch that has initially a long bunch length and small 

momentum spread will have after 
𝟏

𝟒
𝑻𝒔 a short bunch length and 

large momentum spread 

Used in the PS just before 
extraction to fit the long PS 
bunches into the SPS bucket 

rotated 
bunch 

SPS 
bucket 
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Slip stacking 

 Merging two bunch trains to increase flux by slipping them in 
phase/position relative each other 

 Need 2 different RF systems at different frequencies: one train 
is decelerated, one accelerated, and finally both are captured 

 Operational at Fermilab, planned for SPS ion operation to halve 
bunch spacing 
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COLLECTIVE EFFECTS 
Interaction of the beam and its surroundings 
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Space charge 

 Space charge refers to the 3D charge density distribution 𝝆 𝒙  

 In a real bunch, particles will not only feel the external RF 
potential, but also the Coulomb interaction with neighbouring 
particles, which generates an electric potential as well 

 Negligible for ultra-relativistic beams 

 Ideally, one would need to solve the 3D Poisson equation 

𝛁𝟐𝝓 = −𝛁 ∙ 𝑬 = −
𝝆

𝜺𝟎
 , using many particles and taking into 

account the external RF potential and the beam pipe (in BCs)  
 In computational plasma physics this is usually done using the particle-

in-cell (PIC) method 

 In beam dynamics, we try to avoid such expensive methods 

 Instead, we model the space charge effect through effective 
potentials, as an impedance 
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Machine impedance 

 Talking of which it suddenly becomes very complicated… 

 The accelerator is built of many conducting elements: beam 
pipes, cavities, kickers, etc., having a frequency-dependent 
complex (hermitian) impedance 𝒁(𝒇) 

 The impedance is a machine property 

 Can be described via its Fourier-transform the wake field 

𝑾(𝒕); in longitudinal plane: 𝑾∥ 𝒕 > 𝟎 =
𝟏

𝟐𝝅
 𝒅𝝎 𝒆𝒊𝝎𝒕𝒁∥ 𝝎
∞

−∞
 

 There is a whole ‘zoo’ of analytical impedance models for 

 Resistive wall, space charge, broadband-resonators, etc. 

 Often, however, we need more accurate data 

 Electromagnetic simulations, e.g. CST Studio 
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Beam-machine interaction 

 The beam, having a time-dependent current density 𝒋(𝒕) will 
interact with the impedance 

 Just like in an electric circuit, an electric potential 𝝓 = 𝒋𝒁 will 
be induced 

 Hence, the effective potential according to which the beam 
will move is the sum of the RF and beam-induced potential 

 The modified energy equation becomes 
∆𝑬𝒏+𝟏=

= ∆𝑬𝒏 + 𝒆𝑽𝒏 𝐬𝐢𝐧𝝋𝒏 − 𝑬𝒔
𝒏+𝟏 − 𝑬𝒔

𝒏  −

− 𝒆𝟐 𝒅𝝉 𝝀 𝝉 𝑾∥(𝒕
𝒏+𝟏 − 𝝉)

𝒕𝒏+𝟏

−∞

   (𝟗) 

 convolution of bunch line density and wake 

beam machine 
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Modelling collective effects 

 Due to the convolution, the motion of a particle ‘behind’ 
depends on the induced voltage of the particles ‘in front’ 

 The energy kick due to collective effects can be modelled 

 In frequency domain: kick = impedance  bunch spectrum 

 In time domain: kick = convolution of wake and bunch profile 

 Numerically, both methods have pros and cons ( Lecture 2) 

 Usually it is more effective to discretise the bunch profile 
using slices and calculate collective effects separate from the 
EOMs every turn 

 The slicing has to be chosen such that all frequencies playing a 

role are resolved 𝜟𝒕 <
𝟏

𝒇
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The concept of Landau damping 

 Now if an impedance sits e.g. at a frequency that matches the 
synchrotron frequency of the bunch, collective oscillations 
can be excited, the bunch can become unstable 

 In fact, even without any machine impedance, purely due to 
space charge, a bunch with no momentum spread (i.e. all 
particles oscillating with 𝝎𝑠) is unstable as well 

 It is due to the momentum spread in the bunch, and the 
resulting ‘tune spread’ in synchrotron oscillation frequency 
𝝎𝒔= 𝝎𝒔(𝝋) that the bunch is stable. This natural damping of 
oscillations is called Landau damping. 

 There are many types of beam instabilities and each of them 
has its own intensity threshold. Thresholds can be increased 
through controlled damping, at least up to some level… 
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LLRF 
Low-power level RF loops 
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What are LLRF loops? 

 LLRF loops are control electronics that act on-line on RF 
voltage, phase, and frequency with the main purpose of 

 Monitor and correct the applied RF w.r.t. the designed RF 

 Correct for noise or collective effects 

 Stabilise the beam by damping collective oscillations 

 For shielding, LLRF equipment is installed in ‘Faraday cages’ 

LHC Faraday cage 
LHC Beam control 
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Examples 

 Keeping cavity 𝑽 and 𝝋 as programmed 

 Cavity loop: Slow feedback 

 One-turn-delay feedback to compensate for beam loading 

 Feed-forward (optional): to reduce the errors in the correction  

 Synchro and radial loops: keep the bunch centred 

 Synchro loop: synchronises RF with magnetic field (𝝎𝑹𝑭 = 𝒉𝝎𝟎) 

 Radial loop: corrects transverse position 

 Beam phase loop: correct differences btw. RF and beam phase  

 Damp injection oscillations, phase noise, etc. 

 Longitudinal/transverse dampers: designed to damp 
instabilities (longitudinal/transverse oscillations) 
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How to model LLRF loops? 

 Some loops are ‘built in’ in the numerical model: we assume 

 Cavity 𝑽 and 𝝋 as programmed (e.g. cavity loop, FB, FF) 

 RF frequency as programmed (e.g. synchro loop) 

 Other loops have to be modelled via their action 

 Applying transfer functions on the particle coordinates (e.g. 
transverse damper) 

 Changing the EOMs (phase loop) 

 Modelling the electronics (loop gain, bandwidth, etc.) 

 In general, we need to take into account frequency and phase 
shifts in the EOMs 
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A ‘real’ example 

 Simulation of the LHC acceleration ramp with controlled 
emittance blow-up and phase loop 

 Natural bunch shrinkage during ramp leads to loss of Landau 
damping; controlled phase noise injection used for blow-up 

Before ramp, 450 GeV After ramp, 4 TeV 
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COMPLEXITY OF  
NUMERICAL MODELS 

Are end-to-end simulations possible? 



Numerical Methods of Longitudinal Beam Dynamics 

44 
iCSC2015, Helga Timko, CERN 

End-to-end simulations? 

 So-called end-to-end simulations are used to calculate beam 
dynamics in linacs, from one end to the other 

 Possible because one can use mapping from one stage to 
another, and the investigated phenomena are very different 

 Could we do something similar for synchrotrons, say simulate 
the beam dynamics from injection to PSB till physics in LHC? 

 What do you think? What is your feeling for the complexity of 
the problem? 
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A (very) rough runtime estimate (1) 

 How long would it take to simulate ‘just’ the LHC full beam 
with intensity effects? 

 A reasonable simulation that was done: 

 Single bunch 

 50,000 particles, 100 slices 

 Acceleration ramp: 8,700,000 turns (11 minutes real time) 

 Phase loop and noise injection for controlled emittance blow-up 

 No intensity effects 

 Runtime: 3 days on a single CPU 
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A (very) rough runtime estimate (2) 

+ Intensity effects (might even need much more particles/slices) 

 2  6 days 

+ Full LHC cycle: injection (1 h) + ramp (11 min.) + physics (8 h) 

 50  300 days ~ 1 year 

+ In physics: beam-beam interaction, 6D phase space 

 2-10?  2 years 

+ Full beam 

 2808  5600 years 

+ Coupled bunch effects 

 2-10?  >10000 years (≫ LHC lifetime!) 
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Take-home messages 

 What is a bunch and how can we accelerate it? 

 How does the magnetic field relate to the cavities’ RF 
frequency in a synchrotron? 

 What kind of basic effects (building blocks) do we need to 
consider in a numerical model? 
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