

Exploring EDA, Clustering and Data Preprocessing Lecture **2**

Taking Raw Data Towards Analysis

Vincent Croft NIKHEF - Nijmegen

Inverted CERN School of Computing, 23-24 February 2015

iCSC2015, Vince Croft, NIKHEF

The path towards the sunlight...

 Our eyes see hundreds of colours, our ears hear thousands of frequencies, our user logs thousands of alphanumeric values... How do we keep ourselves from being overwhelmed.

Outline

- Mapping
- Clustering
- Data Reduction

- Higher focus on examples
- Using real data from internet
- Brief introduction to scalable data analysis on big data

Linked in

Worked Examples

- All examples will be available online
- If you are not here in person or want to see the examples presented for yourself please see the support documentation on my institute web page.

http://www.nikhef.nl/~vcroft/

http://www.nikhef.nl/~vcroft/exploringEDA.pdf

http://www.nikhef.nl/~vcroft/takingRawDataTowardsAnalysis.pdf

iCSC2015, Vince Croft, NIKHEF

Mapping – Heat Maps

One last page in R

Fund Category	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013 YTD
Total Equity Funds	4%	3%	3%	1%	-3%	2%	2%	-1%	1%	3.4%
Total Developed Market Equity Funds	4%	2%	2%	-1%	-3%	-1%	0%	0%	0%	3.8%
International Equity Funds	8%	6%	7%	6%	-4%	4%	1%	1%	1%	3.8%
US Equity Funds	1%	-1%	-1%	0%	0%	-4%	0%	0%	-1%	3.5%
Western Europe Equity Funds	1%	-1%	7%	-13%	-12%	1%	-3%	-2%	-2%	0.4%
Japan Equity Funds	52%	44%	0%	-27%	-18%	-19%	-3%	5%	10%	24.7%
Pacific Equity Funds	7%	-3%	12%	-1%	-16%	17%	8%	-8%	1%	7.9%
Total Emerging Market Equity Funds	3%	16%	11%	12%	-7%	27%	16%	-5%	7%	0.4%
Global Emerging Market Equity Funds	-10%	3%	4%	10%	-4%	32%	23%	-1%	12%	2.5%
EMEA Equity funds	27%	40%	-6%	-2%	-8%	11%	20%	-11%	-4%	-7.4%
Latin America Equity Funds	10%	81%	27%	46%	-12%	48%	4%	-12%	-1%	-8.5%
Asia Pacific Ex-Japan Funds	21%	22%	27%	14%	-9%	21%	10%	-7%	3%	0.2%
Total Bond Funds	14%	4%	8%	-2%	-10%	24%	16%	4%	11%	1.5%
International Bond Funds	12%	12%	10%	-2%	-24%	25%	23%	3%	6%	1.1%
Corporate High Yield Bond Funds	NA	-18%	-2%	-4%	-5%	40%	15%	4%	18%	1.4%
US Bond Funds	NA	-17%	-9%	4%	-2%	23%	10%	6%	12%	2.2%
Western Europe Bond funds	NA	1%	58%	-8%	-46%	29%	-7%	-28%	2%	-3.4%
Germany Bond funds	NA	NA	NA	NA	NA	NA	29%	25%	-13%	-5.7%
Switzerland Bond funds	NA	NA	NA	NA	NA	NA	-65%	-19%	-2%	-2.0%
United Kingdom Bond funds	NA	22%	-17%	-141%	-26%	64%	8%	-3%	0%	-4.1%
Emerging Markets Debt Funds	12%	24%	18%	9%	-21%	19%	54%	7%	25%	2.4%
Asia ex-Japan Bond funds	NA	4%	3%	16%	-10%	2%	71%	25%	12%	2.2%
Emerging Europe Bond funds	NA	40%	-12%	-18%	-37%	-19%	-8%	-39%	-9%	0.1%
Lat-Am Bond funds	NA	-28%	-22%	-33%	-30%	19%	46%	38%	68%	2.8%
Money Market Funds	NA	NA	NA	NA	31%	-17%	-15%	-4%	-1%	-2.7%

Colour Legen	d:				
13%	8%	3%	-3%	-8%	-13%
>10%	5% to 10%	0% to 5%	-5% to 0%	-10% to -5%	<-10%

Source: EPFR, Deutsche Bank calculations

Rotations - Fisher Discriminant

- Rotating the axis of a 2d plot.
- Used to separate two distributions.
- For example signal and background.
- 0 axis is defined as line best separating two distributions.
- This line doesn't have to be Straight...
- Other transformations?

Rotations - PCA

Principle Component Analysis

Rotates axis to show maximum variance. This axis is referred to as the principle axis

Other axis are defined in accordance

School of Computing

Clustering

Clusters can be formed from:

- Objects close together
- Objects with similar properties
- Objects that fit a particular distribution
- Clustering can include all data points
 - Automatically characterising groups of data.
 - Generalizes information for quicker processing
- Clustering can highlight regions of interest
 - Removing data that doesn't represent some underlying process.
 - Cleans data.

Defining Distance

- Euclidean Distance (x,y)
 - Simple. Intuitive. Easy to visualise
- Density
- Correlations
 - Shows similarity between variables

Mahalanobis distance (standardised statistical distance)

- Accounts for differences in scales between variables
- Ignores effects from highly correlated variables
- Ignores effects from variables with high variance

Many others.

• E.g. binary distance, like manhattan distance.

Hierarchical Clustering

Deterministic

Results are always the same

Shows scale

- All points are clustered eventually
- Needs stopping condition

Uses various distance metrics

 The closest two points are always the closest two, the two highest correlations are the two highest correlations

Hierarchical Clustering

- First find two closest points
- Merge into single cluster
- Find next two closest points
- Merge
- Continue until stop or all points are clustered
- Stopping conditions include:
 - Number of clusters
 - Max distance
 - Fit to distribution

K-Means Clustering

- K is the number of clusters
 - This must be specified.
- The initial properties of each centroid must be provided
 - Often this must be guessed
- Iterates over data until the position of the centroid doesn't change

K-Means Clustering

- Pick number of clusters
- Guess/assign centroids
- Assign points to the closest centroid
- Recalculate centroids

Dimensional Reduction

- Often we don't need all the information about a topic to characterise the underlying process.
- We can transform the data to summarise the data
 - E.g SVD or PCA
- We can cluster the data
 - E.g. Hierarchical or k-means clustering
- This can give us statistical information.
- This can also be used for data compression.
 - I (less variables=less data but with the same information)

Summary

- Data can show us lots of information.
- Information can be obtained from the inter-variable relationships. E.g. (PCA)
- Information can be obtained from the summaries of multivariate distributions.

- In Multivariate analysis adding variables and adding more data sometimes hides information rather than adds to it.
- By exploring the correlations, ranks and distributions of our data we can optimise the information contained for analysis.

Map Reduce

- In MVA each additional variable reduces the density of information and increases processing time exponentially.
- MapReduce is a scalable programming model designed for processing very large data sets in a parallel distributed environment
- Two steps. (possibly iterated)
 - Map Data
 - Filters and sorting
 - e.g. making clusters for each event
 - Reduce Data
 - Makes summary of data
 - E.g. combines clusters into histograms

Use these to redefine clusters

iCSC2015, Vince Croft, NIKHEF

Hadoop

- Platform for distributed computing and parallelized computation whilst being scalable to meet exponential increases in data and cheap to implement.
- Inspired by Google research and Google File System
- Key implementation in analysis for Facebook, Yahoo, american express and many more.

