
Basic concepts in computer architectures

1 iCSC2015, Pawel Szostek, CERN

Evolution of processor architectures: growing complexity
of CPUs and its impact on the software landscape

Lecture 1

Basic concepts in computer
architectures

Paweł Szostek

CERN

Inverted CERN School of Computing, 23-24 February 2015

Basic concepts in computer architectures

2 iCSC2015, Pawel Szostek, CERN

Content of this presentation

I will talk about:
 high-level model of a

computation and
computer

 CPU-memory interaction
 Caches
 Pipeline
 Hazards

I will not talk about:
 OS-related stuff (e.g.

virtual memory)
 faults
 data representation in

memory
 high level languages’

requirements for CPU
architectures (e.g. stack)

 This talk does not aim to
explain complete computer
architecture!

Please interrupt and ask questions
at every point of the presentation!

Basic concepts in computer architectures

3 iCSC2015, Pawel Szostek, CERN

Turing machine

 a theoretical model of a computing apparatus

 it can read and write symbols to an infinite tape

 program is a state machine with outputs and transitions being a
function of current state and input

 if a real machine can compute something, Turing machine can as
well

source: decodescience.com

Basic concepts in computer architectures

4 iCSC2015, Pawel Szostek, CERN

von Neumann machine

 realistic model of a processing machine from 1945…

 still valid in 2015

so
ur

ce
: w

w
w

.s
pr

in
g-

al
ph

a.
or

g

Basic concepts in computer architectures

5 iCSC2015, Pawel Szostek, CERN

Model of a simple computer

How many memory cells can be addressed with 32 bits?

Basic concepts in computer architectures

6 iCSC2015, Pawel Szostek, CERN

Model of a simple computer (II)

 What do we have inside?
 Program Counter – register that keeps track of the currently

executed instruction
 Registers – in-processor super-fast memory for keeping

instruction operands and bookkeeping
 ALU – Arithmetic-logical unit – building block able to perform

arithmetic (e.g. add, divide, subtract, multiply) and logical
operations (e.g. shifts, comparisons)

 data and address buses, to ensure communication between
CPU and the memory

 large and slow main memory for keeping data and code

Basic concepts in computer architectures

7 iCSC2015, Pawel Szostek, CERN

MEMORY SUBSYSTEM
Basic concepts in computer architectures: part 2

so
ur

ce
: m

at
ry

os
hk

a.
bi

z

Basic concepts in computer architectures

8 iCSC2015, Pawel Szostek, CERN

What changed since 70’s?

 Back in 1970s memory used to be faster than CPUs

 Nowadays, memory compared to CPUs is incredibly slow

Our problem
is growing

Basic concepts in computer architectures

9 iCSC2015, Pawel Szostek, CERN

Interlude: memory != memory

 There are different memory technologies

DRAM
(Dynamic RAM)

SRAM
(Static RAM)

so
ur

ce
: w

ik
ip

ed
ia

.o
rg

Basic concepts in computer architectures

10 iCSC2015, Pawel Szostek, CERN

Interlude: memory != memory
SRAM

 transistors actively drive
output lines

 almost instantaneous state
change

 more expensive than
DRAM

 space-consuming

DRAM

 needs to be refreshed
periodically (leaks!)

 charging and discharging a
capacitor takes time

 DRAM cell output must be
amplified

 space-efficient

source: Jens Teubner “Data Processing on Modern Hardware”

Basic concepts in computer architectures

11 iCSC2015, Pawel Szostek, CERN

Let’s speed up the memory

 Problem: fast memory is expensive

 Solution: introduce memory hierarchy, with a fast memory on the
top and slow on the bottom

source: Jens Teubner “Data processing on modern hardware”

Basic concepts in computer architectures

12 iCSC2015, Pawel Szostek, CERN

Interlude: latency vs. bandwidth

 latency and bandwidth are two orthogonal dimensions of
performance
 latency = how fast can we finish a job
 bandwidth = how much can we push at a time

Can you think of a data link with incredibly high bandwidth, but
huge latency?

Basic concepts in computer architectures

13 iCSC2015, Pawel Szostek, CERN

Interlude: cache hit and miss

source: Markus Pueschel “How to write fast numerical code”

Basic concepts in computer architectures

14 iCSC2015, Pawel Szostek, CERN

Interlude: cache hit and miss

Macroscopic effect:
your code goes terribly slow

Basic concepts in computer architectures

15 iCSC2015, Pawel Szostek, CERN

Food for thought: the big picture

so
ur

ce
: M

ar
ku

s
P

ue
sc

he
l “

H
ow

 to
 w

rit
e

fa
st

 n
um

er
ic

al
 c

od
e”

There is a divergence from the von Neumann model. Where?

Basic concepts in computer architectures

16 iCSC2015, Pawel Szostek, CERN

PIPELINE
Basic concepts in computer architectures: part 3

so
ur

ce
: o

k3
.o

rg

Basic concepts in computer architectures

17 iCSC2015, Pawel Szostek, CERN

Memory latency consequences
 Theoretical peak memory bandwidth: the maximum amount of

data that can be read in a time unit.
𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒑𝒑𝒑𝒑𝒃𝒃𝒑𝒑 = 𝟐𝟐 × 𝒄𝒄𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒑𝒑𝒄𝒄𝒄𝒄 × 𝒃𝒃𝒃𝒃𝒄𝒄 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 × 𝒇𝒇𝒇𝒇𝒑𝒑𝒇𝒇𝒃𝒃𝒑𝒑𝒃𝒃𝒄𝒄𝒇𝒇

 therefore for a real memory we get:

𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒑𝒑𝒑𝒑𝒃𝒃𝒑𝒑 = 𝟐𝟐 × 𝟐𝟐 ×
𝟑𝟑𝟑𝟑𝟑𝟑
𝟑𝟑

𝒃𝒃𝒇𝒇𝒃𝒃𝒑𝒑𝒄𝒄 × 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 = 𝟐𝟐𝟑𝟑𝟑𝟑𝟑𝟑𝟐𝟐/𝒄𝒄
 288GB is equivalent to 36G doubles

 NVIDIA Tesla Kepler K40 throughput = 1400GFLOPS (double)

 To achieve peak performance a program need to perform
1400/36 ≈ 39 operations on every double fetched from the
main memory

How to improve utilization of the data fetched from RAM?

so
ur

ce
: V

in
ce

nz
o

In
no

ce
nt

e

Basic concepts in computer architectures

18 iCSC2015, Pawel Szostek, CERN

How does CPU see my code?

int divide(unsigned int a,
 unsigned int b)
{
 unsigned int rv = 0;
 while(a>0) {
 ++rv;
 a -= b;
 }
 return rv;
}

 xorl %eax, %eax

 testl %edi, %edi

 je .L5

.L4:

 leal 1(%rax),%eax

 subl %esi, %edi

 jne .L4

.L5:

 ret

C code Assembly code

Basic concepts in computer architectures

19 iCSC2015, Pawel Szostek, CERN

How does CPU see my code? (II)

 xorl %eax, %eax

 testl %edi, %edi

 je .L5

.L4:

 leal 1(%rax),%eax

 subl %esi, %edi

 jne .L4

.L5:

 ret

int divide(unsigned int a,
 unsigned int b)
{
 unsigned int rv = 0;
 while(a>0) {
 ++rv;
 a -= b;
 }
 return rv;
}

int divide(unsigned int a,
 unsigned int b)
{
 unsigned int rv = 0;
 while(a>0) {
 ++rv;
 a -= b;
 }
 return rv;
}

C code Assembly code

Basic concepts in computer architectures

20 iCSC2015, Pawel Szostek, CERN

Interlude: RISC vs. CISC

 CISC = Complex Instruction Set Computing
RISC = Reduced Instruction Set Computing

 Two major directions in CPU design

 To see how it works let’s multiply two numbers from the memory

CISC

mul $(0x123), $(0x456)

RISC

load RA, $(0x123)
load RB, $(0x456)
mul RA, RB
store $(0x123), RA

Basic concepts in computer architectures

21 iCSC2015, Pawel Szostek, CERN

Interlude: RISC vs. CISC (II)
CISC RISC

Emphasis on hardware Emphasis on software
Multi-clock complex instructions
translated to simpler operations

Single-clock reduced
instructions executed directly*

Memory-to-memory operations Register-to-register operations
only

Smaller machine code size Larger machine code size
Any instruction can reference
memory

Only LOAD and STORE
references memory

Applications: desktop and
server machines

Applications: low power designs
(cell phones, tablets)

Basic concepts in computer architectures

22 iCSC2015, Pawel Szostek, CERN

Pipelining
 Execution of a single instruction takes a couple of cycles (5 on the

drawing below) and is split into simpler operations

 Pipelining is a technique for instruction-level parallelism. In a
perfect case n-stages pipeline improves throughput by factor of n.

 Pipeline performance can be hindered by an “unfortunate”
instruction flow called hazard (structural, data, control)

Basic concepts in computer architectures

23 iCSC2015, Pawel Szostek, CERN

Hazard #1: Structural Hazard

Structural hazard occurs when the same hardware resources are
needed by different instructions in the same time.
Example: memory write and instruction fetch executed by the
same hardware.

Basic concepts in computer architectures

24 iCSC2015, Pawel Szostek, CERN

Hazard #2: Data Hazard
Data hazards occur when result of an instruction is not ready
when it is accessed by a later instruction.

counter+=1;
counter+=1;
counter+=1;
…

Basic concepts in computer architectures

25 iCSC2015, Pawel Szostek, CERN

Hazard #3: Control Hazard

 Pipeline cannot be filled before it is known which path to
follow
 in modern CPUs, a path is executed speculatively by predicting

if a branch will be taken a=b+c;
if (a%2)
 return 1;
else
 return 0;

Can you think of a way to optimize this code?

Basic concepts in computer architectures

26 iCSC2015, Pawel Szostek, CERN

Speculative execution

 Problem: branch can be taken or not

 Solution: execute speculatively
 guess branch target → start executing at guessed position
 execute branch → verify guess afterwards

 Branch prediction: guessing the branch
 one of the non-trivial problems in computer architectures
 dedicated hardware to keep track of branch targets,
 if the guess is correct, there is no penalty at all
 if the guess is incorrect, CPU needs to flush the pipeline

Basic concepts in computer architectures

27 iCSC2015, Pawel Szostek, CERN

Execution hazards - example

int array[10000];
const int THRESHOLD = 5000;
int count = 0;

for(int i=0; i<10000; ++i)
 array = (int)(random(0,1)*10000);
for(int i=0; i<10000; ++i)
 if(array[i] > THRESHOLD)
 ++count;

 An array of 10’000 integers from a uniform [0,9999] distribution
 We change condition selectivity by changing threshold
 Straight way to a control hazard
 IF statement prevents vectorization

source: Jens Teubner “Data processing on Modern Hardware”

Initialization will be
skipped on next slid

Basic concepts in computer architectures

28 iCSC2015, Pawel Szostek, CERN

Execution hazards – example (II)

Basic concepts in computer architectures

29 iCSC2015, Pawel Szostek, CERN

Execution hazards – example (III)

for(int i=0; i<10000; ++i)
 if(array[i] > THRESHOLD)
 ++count;

for(int i=0; i<10000; ++i)
 count += (array[i] > THRESHOLD);

 we change control flow into data flow
 cost: we need to do an addition at every iteration
 gains:
 no more mispredicted branches,
 the loop can be vectorized

Basic concepts in computer architectures

30 iCSC2015, Pawel Szostek, CERN

Execution hazards – example(IV)

Basic concepts in computer architectures

31 iCSC2015, Pawel Szostek, CERN

Execution hazards – example (V)

 There is still a data hazard
 In each iteration we need the value of count from the previous

iteration
 We can divide the array in two parts and interleave addition to

two counters

for(int i=0; i<10000; ++i)
 count += (array[i] > THRESHOLD);

for(int i=0; i<5000; ++i) {
 count1 += (array[i] > THRESHOLD);
 count2 += (array[i+5000] > THRESHOLD);
}
count1 += count2;

Basic concepts in computer architectures

32 iCSC2015, Pawel Szostek, CERN

Execution hazards – example (VI)

Basic concepts in computer architectures

33 iCSC2015, Pawel Szostek, CERN

Takeaway messages

1. We stick to a model which is 70 years old.

2. Main blocking factor in heavy computation is memory. Caches
speed-up things, but as long as the problem fits into them.

3. Big classes are not a problem of space – they are problem of
speed.

4. Complex instructions are translated to simpler ones.

5. “Unfortunate” instruction stream can inhibit performance.

6. Most readable code is probably not the most efficient.

	Slide Number 1
	Content of this presentation
	Turing machine
	von Neumann machine
	Model of a simple computer
	Model of a simple computer (II)
	MEMORY SUBSYSTEM
	What changed since 70’s?
	Interlude: memory != memory
	Interlude: memory != memory
	Let’s speed up the memory
	Interlude: latency vs. bandwidth
	Interlude: cache hit and miss
	Interlude: cache hit and miss
	Food for thought: the big picture
	Pipeline
	Memory latency consequences
	How does CPU see my code?
	How does CPU see my code? (II)
	Interlude: RISC vs. CISC
	Interlude: RISC vs. CISC (II)
	Pipelining
	Hazard #1: Structural Hazard
	Hazard #2: Data Hazard
	Hazard #3: Control Hazard
	Speculative execution
	Execution hazards - example
	Execution hazards – example (II)
	Execution hazards – example (III)
	Execution hazards – example(IV)
	Execution hazards – example (V)
	Execution hazards – example (VI)
	Takeaway messages

