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Content of this presentation 

I will talk about: 
 high-level model of a 

computation and 
computer 

 CPU-memory interaction 
 Caches 
 Pipeline 
 Hazards 

 

 

I will not talk about: 
 OS-related stuff (e.g. 

virtual memory) 
 faults 
 data representation in 

memory 
 high level languages’ 

requirements for CPU 
architectures (e.g. stack) 

 This talk does not aim to 
explain complete computer 
architecture! 

Please interrupt and ask questions 
at every point of the presentation! 
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Turing machine 

 a theoretical model of a computing apparatus 

 it can read and write symbols to an infinite tape 

 program is a state machine with outputs and transitions being a 
function of current state and input 

 if a real machine can compute something, Turing machine can as 
well 

source: decodescience.com 
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von Neumann machine 

 realistic model of a processing machine from 1945… 

 still valid in 2015 
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Model of a simple computer 

How many memory cells  can be addressed with 32 bits? 
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Model of a simple computer (II) 

 What do we have inside? 
 Program Counter – register that keeps track of the currently 

executed instruction 
 Registers – in-processor super-fast memory for keeping 

instruction operands and bookkeeping 
 ALU – Arithmetic-logical unit – building block able to perform 

arithmetic (e.g. add, divide, subtract, multiply) and logical 
operations (e.g. shifts, comparisons) 

 data and address buses, to ensure communication between 
CPU and the memory 

 large and slow main memory for keeping data and code 
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MEMORY SUBSYSTEM 
Basic concepts in computer architectures: part 2 

so
ur

ce
: m

at
ry

os
hk

a.
bi

z 



Basic concepts in computer architectures 

8 iCSC2015, Pawel Szostek, CERN 

What changed since 70’s? 

 Back in 1970s memory used to be faster than CPUs 

 Nowadays, memory compared to CPUs is incredibly slow 

Our problem 
is growing 
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Interlude: memory != memory 

 There are different memory technologies 

DRAM 
(Dynamic RAM) 

SRAM 
(Static RAM) 
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Interlude: memory != memory 
SRAM 

 transistors actively drive 
output lines 

 almost instantaneous state 
change 

 more expensive than 
DRAM 

 space-consuming 

DRAM 

 needs to be refreshed 
periodically (leaks!) 

 charging and discharging a 
capacitor takes time 

 DRAM cell output must be 
amplified 

 space-efficient 

source: Jens Teubner “Data Processing on Modern Hardware” 
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Let’s speed up the memory 

 Problem: fast memory is expensive 

 Solution: introduce memory hierarchy, with a fast memory on the 
top and slow on the bottom 

source: Jens Teubner “Data processing on modern hardware” 
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Interlude: latency vs. bandwidth 

 latency and bandwidth are two orthogonal dimensions of 
performance 
 latency = how fast can we finish a job 
 bandwidth = how much can we push at a time 

 

Can you think of a data link with incredibly high bandwidth, but 
huge latency? 



Basic concepts in computer architectures 

13 iCSC2015, Pawel Szostek, CERN 

Interlude: cache hit and miss 

source: Markus Pueschel “How to write fast numerical code” 
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Interlude: cache hit and miss 

Macroscopic effect: 
your code goes terribly slow 
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Food for thought: the big picture 
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There is a divergence from the von Neumann model. Where? 
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PIPELINE 
Basic concepts in computer architectures: part 3 
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Memory latency consequences 
 Theoretical peak memory bandwidth: the maximum amount of 

data that can be read in a time unit. 
𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒑𝒑𝒑𝒑𝒃𝒃𝒑𝒑 = 𝟐𝟐 × 𝒄𝒄𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒑𝒑𝒄𝒄𝒄𝒄 × 𝒃𝒃𝒃𝒃𝒄𝒄 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 × 𝒇𝒇𝒇𝒇𝒑𝒑𝒇𝒇𝒃𝒃𝒑𝒑𝒃𝒃𝒄𝒄𝒇𝒇 

 therefore for a real memory we get: 

𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒑𝒑𝒑𝒑𝒃𝒃𝒑𝒑 = 𝟐𝟐 × 𝟐𝟐 ×
𝟑𝟑𝟑𝟑𝟑𝟑
𝟑𝟑

𝒃𝒃𝒇𝒇𝒃𝒃𝒑𝒑𝒄𝒄 × 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 = 𝟐𝟐𝟑𝟑𝟑𝟑𝟑𝟑𝟐𝟐/𝒄𝒄 
 288GB is equivalent to 36G doubles 

 NVIDIA Tesla Kepler K40 throughput = 1400GFLOPS (double) 

 To achieve peak performance a program need to perform 
1400/36 ≈ 39 operations on every double fetched from the 
main memory 

How to improve utilization of the data fetched from RAM? 
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How does CPU see my code? 

int divide(unsigned int a, 
  unsigned int b) 
{ 
    unsigned int rv = 0; 
    while(a>0) { 
        ++rv;  
        a -= b; 
    } 
    return rv; 
} 

  xorl  %eax,  %eax 

  testl %edi,  %edi 

  je    .L5 

.L4: 

  leal  1(%rax),%eax   

  subl  %esi,   %edi 

  jne   .L4 

.L5: 

  ret 

C code Assembly code 
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How does CPU see my code? (II) 

  xorl  %eax,  %eax 

  testl %edi,  %edi 

  je    .L5 

.L4: 

  leal  1(%rax),%eax   

  subl  %esi,   %edi 

  jne   .L4 

.L5: 

  ret 

int divide(unsigned int a, 
  unsigned int b) 
{ 
    unsigned int rv = 0; 
    while(a>0) { 
        ++rv;  
        a -= b; 
    } 
    return rv; 
} 

int divide(unsigned int a, 
  unsigned int b) 
{ 
    unsigned int rv = 0; 
    while(a>0) { 
        ++rv;  
        a -= b; 
    } 
    return rv; 
} 

C code Assembly code 
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Interlude: RISC vs. CISC 

 CISC = Complex Instruction Set Computing 
RISC = Reduced Instruction Set Computing 

 Two major directions in CPU design 

 To see how it works let’s multiply two numbers from the memory 

CISC 
 

mul $(0x123), $(0x456) 

RISC 
 
load RA, $(0x123) 
load RB, $(0x456) 
mul RA, RB 
store $(0x123), RA 
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Interlude: RISC vs. CISC (II) 
CISC RISC 

Emphasis on hardware Emphasis on software 
Multi-clock complex instructions 
translated to simpler operations 

Single-clock reduced 
instructions executed directly* 

Memory-to-memory operations Register-to-register operations 
only 

Smaller machine code size Larger machine code size 
Any instruction can reference 
memory 

Only LOAD and STORE 
references memory 
 

Applications: desktop and 
server machines 

Applications: low power designs 
(cell phones, tablets) 
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Pipelining 
 Execution of a single instruction takes a couple of cycles (5 on the 

drawing below) and is split into simpler operations 

 Pipelining is a technique for instruction-level parallelism. In a 
perfect case n-stages pipeline improves throughput by factor of n. 

 Pipeline performance can be hindered by an “unfortunate” 
instruction flow called hazard (structural, data, control) 
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Hazard #1: Structural Hazard 

Structural hazard occurs when the same hardware resources are 
needed by different instructions in the same time. 
Example: memory write and instruction fetch executed by the 
same hardware. 
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Hazard #2: Data Hazard 
Data hazards occur when result of an instruction is not ready 
when it is accessed by a later instruction. 

counter+=1; 
counter+=1; 
counter+=1; 
… 
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Hazard #3: Control Hazard 

 Pipeline cannot be filled before it is known which path to 
follow 
 in modern CPUs, a path is executed speculatively by predicting 

if a branch will be taken a=b+c; 
if (a%2) 
  return 1; 
else 
  return 0; 

Can you think of a way to optimize this code? 
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Speculative execution 

 Problem: branch can be taken or not 

 Solution: execute speculatively 
 guess branch target → start executing at guessed position 
 execute branch → verify guess afterwards 

 Branch prediction: guessing the branch 
 one of the non-trivial problems in computer architectures 
 dedicated hardware to keep track of branch targets, 
 if the guess is correct, there is no penalty at all 
 if the guess is incorrect, CPU needs to flush the pipeline 
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Execution hazards - example 

 
int array[10000]; 
const int THRESHOLD = 5000; 
int count = 0; 
 
for(int i=0; i<10000; ++i) 
 array = (int)(random(0,1)*10000); 
for(int i=0; i<10000; ++i) 
 if(array[i] > THRESHOLD) 
  ++count; 
 

 An array of 10’000 integers from a uniform [0,9999] distribution 
 We change condition selectivity by changing threshold 
 Straight way to a control hazard 
 IF statement prevents vectorization 

 

source: Jens Teubner “Data processing on Modern Hardware” 

Initialization will be 
skipped on next slid  
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Execution hazards – example (II) 
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Execution hazards – example (III) 

 
for(int i=0; i<10000; ++i) 
 if(array[i] > THRESHOLD) 
  ++count; 
 
 
for(int i=0; i<10000; ++i) 
 count += (array[i] > THRESHOLD); 

 we change control flow into data flow 
 cost: we need to do an addition at every iteration 
 gains: 
 no more mispredicted branches, 
 the loop can be vectorized 
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Execution hazards – example(IV) 
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Execution hazards – example (V) 

 There is still a data hazard 
 In each iteration we need the value of count from the previous 

iteration 
 We can divide the array in two parts and interleave addition to 

two counters 
 
for(int i=0; i<10000; ++i) 
 count += (array[i] > THRESHOLD); 
 
 
for(int i=0; i<5000; ++i) { 
 count1 += (array[i] > THRESHOLD); 
 count2 += (array[i+5000] > THRESHOLD); 
} 
count1 += count2; 
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Execution hazards – example (VI) 
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Takeaway messages 

1. We stick to a model which is 70 years old. 

2. Main blocking factor in heavy computation is memory. Caches 
speed-up things, but as long as the problem fits into them. 

3. Big classes are not a problem of space – they are problem of 
speed. 

4. Complex instructions are translated to simpler ones. 

5. “Unfortunate” instruction stream can inhibit performance. 

6. Most readable code is probably not the most efficient. 
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