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Last time

® Best come from spectrum

® These equations can be integrated with a suitable initial condition
| haven't told you how to get that — see Dias et al. arXiv:1502.03125

® Doesn't involve any approximation beyond tree-level and our

ability to compute the initial condition sufficiently accurately
Initial condition requires slow-roll approximation, but not afterwards

® Computational cost is peanuts
0.00507s per k-mode on my laptop — easily fast enough to include in
a parameter-estimation Monte Carlo.
Analytic estimates aren’t the best way to compare to data.

® Freely available codes exist



Spectrum COdeS (in chronological order)

FieldInf (Ringeval, Martin — FORTRAN)

http://theory.physics.unige.ch/~ringeval/fieldint.html

ModeCode, MultiModeCode (Easter, Frazer, Peiris, Price, Xu — FORTRAN)

http://modecode.org | only trivial field-space metric

Sussex & QMUL code (Dias, Frazer, DS — Mathematica)

http://transportmethod.com



http://theory.physics.unige.ch/~ringeval/fieldinf.html
http://modecode.org
http://transportmethod.com

The next level of complexity is the bispectrum, which measures three-body interactions
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The next level of complexity is the bispectrum, which measures three-body interactions

higher n-point functions can be
interpreted in the same way
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How to compute the bispectrum

The structure is the same as for the spectrum, although the details are more complicated

<C(k1)<(k2)<(k3)>7 =5 (277)35(131 + k2 + kS)BT(klv ko, k3)

/ 1 \

three-point function Fourier convention Bispectrum

The evolution equation for the three-point functions is

DN (XX X = uaq(X X XE) + Ugqe (XX (X XC) + cyclic perms

same as 2pf built from 3rd-order
terms in Hamiltonian

2-point function sources the 3-point function



k; = perimeter = k1 + ko + k3

& = 0 means isosceles

k
k1:§(1+a+5)

ki k
kr=2(1-ath)

ks

k3:%( =118

B varies from O to 1 as k3 varies from O to ki/2



There is a lot of information in the bispectrum

. _ . "squeezed” or "soft” configuration
equilateral configuration

/ ks < k1 ~ ko
ki~ ko ~ k3

\

Fergusson-Shellard-Liguori parametrization

klzﬁ(l—F(X‘Fﬂ)

4
ky ~
ky = —£(1— - :
2= (l—a+p) “flattened” configuration
k
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The mode-mode correlation in the bispectrum is
diagnostic of the underlying microphysics

e Equilateral. Indicates that the fluctuations have
strong, nontrivial self-interactions.

Favours stringy or supergravity scenarios
Dominantly like-like correlations

@ Squeezed. Indicates that there are long-range
forces which set up correlations, so multiple light
modes.

Dominantly long—short correlations

@ Flattened. Indicates a near “resonance” between

ko - k3 positive and negative energy modes.

Favours a non-vacuum initial state
A special case of like-like correlation



There is a lot of information in the bispectrum

equilateral template

near zero correlations

<~

enhanced correlations

\

no long/short correlation
— characteristic of long-range forces

strong correlation between similar wavenumbers
— characteristic of quantum interference



There is a lot of information in the bispectrum



There is a lot of information in the bispectrum

local template

enhanced correlations

\

significant long/short correlation

correlation grows like k= for
near zero correlations

N

massless modes

massive modes soften
little correlation between equal growth to k%%, so
wavenumbers information about the

particle spectrum is here



Unfortunately, there is very little signal-to-noise in any given configuration.
So we do not measure the bispectrum at a given k1, ko, ks or ki, &, B

equilateral

/

Instead, we measure the signal-to-noise for an entire template

] '89500 k. = scale

the simple templates
are scale invariant

amplitude = ;%Ui — —4 443 (Planck2015 temperature+polarization)



local template

0.08.79

amplitude = 11\%&1 = 0.8+ 5.0 (Planck2015 temperature+polarization)



Some models match the templates accurately, but others don't.
Numerical calculations are needed for more than just an estimate
axion + quadratic model with stronger scale dependence

1 2
V = §m2¢2 + A cos %X

0.00

0.038.79



axion mode|
(accurate numerical calculation)

local template
(used to report constraints)



Bispectrum COdeS (in chronological order)

® BINGO, Hazra, Martin, Sreenath, Sriramkumar, arXiv:1201.0926, 1410.0252 — FORTRAN)
single-field only; https://sites.google.com/site/codecosmo/bingo

® Horner & Contaldi, arXiv:1311.3224
single-field only (as far as | know); not publicly available

® Sussex & QMUL code in development (C++)
for 3D iso-surface plot, used 173,502 configurations (likely more than is needed for constraints)
average of 0.15 s/configuration = 7h 12m CPU time

however, that headline figure is a bit misleading



The squeezed limit is expensive to compute, but it's the easiest part of the bispectrum to see
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what does this spike mean? 1

(00 (k1)3(k2)0¢(k3)) ~ 53

/

(09 (k1)od(k2)09(ks)) ~ —=

/



LARGE VOLUME

-
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17

small volume

(0¢(k1)0¢(k2))

.

~

compute a correlation function within a small volume

we can think of this as an average over all ways of
fitting a fixed length into the volume

./

now suppose there are long wavelength modes
crossing the large volume.

How does the correlation function depend
on these long modes?
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small volume

(0¢(k1)09(k2)) «—— depends on the background for the small volume
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compute a correlation function within a small volume

we can think of this as an average over all ways of
fitting a fixed length into the volume

./

now suppose there are long wavelength modes
crossing the large volume.

How does the correlation function depend
on these long modes?



LARGE VOLUME
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now suppose there are long wavelength modes
crossing the large volume.

How does the correlation function depend
on these long modes?



LARGE VOLUME

4l i

Finally, compute the correlation of the im =
correlation in the small box with the long mode

. %

(560 ((5008552) + 06120 (00(0s gtk +---)
|

./

now suppose there are long wavelength modes
crossing the large volume.

How does the correlation function depend
on these long modes?



in other words, roughly

(56(k1 )50 (J2)06 (k) ~ <5¢(k3>5¢<k3>><8%<5¢<k1>5¢(k2>>>

kg <K ]ﬁ, kg

typical response of two-point
function to a long-wavelength mode

so in the presence of a nontrivial bispectrum there is a correction to the power spectrum

B(k17k27k€) L k£—3—0é

Pl o7

A<5¢(k1)5¢(k2)> t

O «—— Is the amplitude systematically
different depending on

Orms
short wavelength field
position on the long mode?
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long wavelength field



We can search for this by looking for an upturn in the clustering power on large scales

| matter power spectrum is roughly k*P (k)

10% | I :

turnover

structures stopped growing -
as they came back inside
the horizon

107 10 107 107 10! 10°
wavenumber k/[h Mpc ]



Galaxy survey measurements (from SDSS)

Data used
with priors on by, «;

no priors

combined
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