Cosmology 2

Primordial fluctuations, continued

NExT summer school 2015
Wednesday 10 June
D.Seery@sussex.ac.uk

Last time

- Best come from spectrum
- These equations can be integrated with a suitable initial condition I haven't told you how to get that - see Dias et al. arXiv:1502.03125
- Doesn't involve any approximation beyond tree-level and our ability to compute the initial condition sufficiently accurately Initial condition requires slow-roll approximation, but not afterwards
- Computational cost is peanuts 0.00507 s per k -mode on my laptop - easily fast enough to include in a parameter-estimation Monte Carlo.
Analytic estimates aren't the best way to compare to data.
- Freely available codes exist

Spectrum codes (in chronological order)

Fieldlnf (Ringeval, Martin — FORTRAN)
http://theory.physics.unige.ch/~ringeval/fieldinf.html

ModeCode, MultiModeCode (Easter, Frazer, Peiris, Price, Xu - FORTRAN) http://modecode.org I only trivial field-space metric

Sussex \& QMUL code (Dias, Frazer, DS — Mathematica)
http://transportmethod.com

The next level of complexity is the bispectrum, which measures three-body interactions

Feynman diagram

The next level of complexity is the bispectrum, which measures three-body interactions

The next level of complexity is the bispectrum, which measures three-body interactions

How to compute the bispectrum

The structure is the same as for the spectrum, although the details are more complicated

$$
\left\langle\zeta\left(\boldsymbol{k}_{1}\right) \zeta\left(\boldsymbol{k}_{2}\right) \zeta\left(\boldsymbol{k}_{3}\right)\right\rangle_{\tau}=(2 \pi)^{3} \delta\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}\right) B_{\tau}\left(k_{1}, k_{2}, k_{3}\right)
$$

three-point function
Fourier convention
Bispectrum

The evolution equation for the three-point functions is
$\mathcal{D}_{N}\left\langle X^{a} X^{b} X^{c}\right\rangle=u_{a d}\left\langle X^{d} X^{b} X^{c}\right\rangle+u_{a d e}\left\langle X^{d} X^{b}\right\rangle\left\langle X^{e} X^{c}\right\rangle+$ cyclic perms

2-point function sources the 3-point function

β varies from 0 to 1 as k_{3} varies from 0 to $k_{t} / 2$

There is a lot of information in the bispectrum

The mode-mode correlation in the bispectrum is diagnostic of the underlying microphysics

- Equilateral. Indicates that the fluctuations have strong, nontrivial self-interactions.
Favours stringy or supergravity scenarios Dominantly like-like correlations
- Squeezed. Indicates that there are long-range forces which set up correlations, so multiple light modes.
Dominantly long-short correlations
- Flattened. Indicates a near "resonance" between positive and negative energy modes.
Favours a non-vacuum initial state
A special case of like-like correlation

There is a lot of information in the bispectrum
equilateral template

There is a lot of information in the bispectrum

There is a lot of information in the bispectrum
local template

Unfortunately, there is very little signal-to-noise in any given configuration.
So we do not measure the bispectrum at a given k_{1}, k_{2}, k_{3} or k_{t}, α, β
Instead, we measure the signal-to-noise for an entire template equilateral
qula

local template

amplitude $=f_{\mathrm{NL}}^{\text {local }}=0.8 \pm 5.0$
(Planck2015 temperature+polarization)

Some models match the templates accurately, but others don't.
Numerical calculations are needed for more than just an estimate
axion + quadratic model with stronger scale dependence

$$
V=\frac{1}{2} m^{2} \phi^{2}+\Lambda^{4} \cos \frac{2 \pi \chi}{f}
$$

Bispectrum codes (in chronological order)

- BINGO, Hazra, Martin, Sreenath, Sriramkumar, arXiv:1201.0926, 1410.0252 — FORTRAN) single-field only; https://sites.google.com/site/codecosmo/bingo
- Horner \& Contaldi, arXiv:1311.3224
single-field only (as far as I know); not publicly available
- Sussex \& QMUL code in development (C++)
for 3D iso-surface plot, used 173,502 configurations (likely more than is needed for constraints) average of $0.15 \mathrm{~s} /$ configuration $=7 \mathrm{~h} 12 \mathrm{~m}$ CPU time
however, that headline figure is a bit misleading

The squeezed limit is expensive to compute, but it's the easiest part of the bispectrum to see

now suppose there are long wavelength modes crossing the large volume.

How does the correlation function depend on these long modes?

now suppose there are long wavelength modes crossing the large volume.

How does the correlation function depend on these long modes?

now suppose there are long wavelength modes crossing the large volume.

How does the correlation function depend on these long modes?

Finally, compute the correlation of the correlation in the small box with the long mode

now suppose there are long wavelength modes crossing the large volume.

How does the correlation function depend on these long modes?
in other words, roughly

$$
\left\langle\delta \phi\left(\boldsymbol{k}_{1}\right) \delta \phi\left(\boldsymbol{k}_{2}\right) \delta \phi\left(\boldsymbol{k}_{3}\right)\right\rangle \sim\left\langle\delta \phi\left(\boldsymbol{k}_{3}\right) \delta \phi\left(\boldsymbol{k}_{3}\right)\right\rangle\left\langle\frac{\partial}{\left\langle\phi_{\ell}\right.}\left\langle\delta \phi\left(\boldsymbol{k}_{1}\right) \delta \phi\left(\boldsymbol{k}_{2}\right)\right\rangle\right\rangle
$$

so in the presence of a nontrivial bispectrum there is a correction to the power spectrum

$$
\Delta\left\langle\delta \phi\left(\boldsymbol{k}_{1}\right) \delta \phi\left(\boldsymbol{k}_{2}\right)\right\rangle \sim \frac{B\left(k_{1}, k_{2}, k_{\ell}\right)}{P\left(k_{\ell}\right)} \sim \frac{k_{\ell}^{-3-\alpha}}{k_{\ell}^{-3+\left(n_{s}-1\right)}}
$$

We can search for this by looking for an upturn in the clustering power on large scales

Galaxy survey measurements (from SDSS)

