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Last time

๏ Best come from spectrum 

๏ These equations can be integrated with a suitable initial condition  
I haven’t told you how to get that — see Dias et al. arXiv:1502.03125 

๏ Doesn’t involve any approximation beyond tree-level and our  
ability to compute the initial condition sufficiently accurately 
Initial condition requires slow-roll approximation, but not afterwards 

๏ Computational cost is peanuts  
0.00507s per k-mode on my laptop — easily fast enough to include in  
a parameter-estimation Monte Carlo. 
Analytic estimates aren’t the best way to compare to data. 

๏ Freely available codes exist



Spectrum codes (in chronological order)

http://theory.physics.unige.ch/~ringeval/fieldinf.html

FieldInf (Ringeval, Martin — FORTRAN)

ModeCode, MultiModeCode (Easter, Frazer, Peiris, Price, Xu — FORTRAN)
http://modecode.org | only trivial field-space metric

Sussex & QMUL code (Dias, Frazer, DS — Mathematica)
http://transportmethod.com

http://theory.physics.unige.ch/~ringeval/fieldinf.html
http://modecode.org
http://transportmethod.com
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The next level of complexity is the bispectrum, which measures three-body interactions
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“cut” the diagram

two particles nucleate, then separate

the particles arrive at the surface of 
observation; they are correlated 
because of their shared history
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The next level of complexity is the bispectrum, which measures three-body interactions
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higher n-point functions can be 
interpreted in the same way
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The next level of complexity is the bispectrum, which measures three-body interactions



How to compute the bispectrum

The structure is the same as for the spectrum, although the details are more complicated

⟨ζ(k1)ζ(k2)ζ(k3)⟩τ = (2π)3δ(k1 + k2 + k3)Bτ (k1, k2, k3)

three-point function Fourier convention Bispectrum

DN ⟨XaXbXc⟩ = uad⟨XdXbXc⟩+ uade⟨XdXb⟩⟨XeXc⟩+ cyclic perms

The evolution equation for the three-point functions is

same as 2pf built from 3rd-order 
terms in Hamiltonian

2-point function sources the 3-point function



k1

k2

k3

k1 =
kt
2
(1 + α+ β)

k2 =
kt
2
(1− α+ β)

k3 =
kt
2
(1− β)

kt = perimeter = k1 + k2 + k3

β varies from 0 to 1 as k3 varies from 0 to kt/2

α = 0 means isosceles



There is a lot of information in the bispectrum

equilateral configuration

k1 ⇠ k2 ⇠ k3

“squeezed” or “soft” configuration

k3 ⌧ k1 ⇠ k2

“flattened” configuration

k1 = 2k2 = 2k3

k1 =
kt
4
(1 + ↵+ �)

k2 =
kt
4
(1� ↵+ �)

k3 =
kt
2
(1� �)

�

1

3

1

↵

1

2

0

Fergusson–Shellard-Liguori parametrization



The mode–mode correlation in the bispectrum is 
diagnostic of the underlying microphysics

k1
k2

k3
Equilateral. Indicates that the fluctuations have 
strong, nontrivial self-interactions.  
Favours stringy or supergravity scenarios  
Dominantly like–like correlations  

k1

k2

k3 Squeezed. Indicates that there are long-range 
forces which set up correlations, so multiple light 
modes. 
Dominantly long–short correlations  

k1

k2 k3
Flattened. Indicates a near “resonance” between 
positive and negative energy modes.  
Favours a non-vacuum initial state  
A special case of like–like correlation  



There is a lot of information in the bispectrum

enhanced correlations

near zero correlations

strong correlation between similar wavenumbers 
— characteristic of quantum interference

no long/short correlation 
— characteristic of long-range forces

equilateral template



There is a lot of information in the bispectrum



There is a lot of information in the bispectrum

enhanced correlations

near zero correlations

little correlation between equal 
wavenumbers

significant long/short correlation

local template

correlation grows like k–3 for 
massless modes

massive modes soften 
growth to k–3+α, so 
information about the 
particle spectrum is here



Unfortunately, there is very little signal-to-noise in any given configuration. 
So we do not measure the bispectrum at a given k1, k2, k3 or kt, α, β

soft

equilateral

flattened

kt = scale

the simple templates 
are scale invariant

amplitude = f equi
NL = −4± 43 (Planck2015 temperature+polarization)

equilateral template

Instead, we measure the signal-to-noise for an entire template



local template

amplitude = f local
NL = 0.8± 5.0 (Planck2015 temperature+polarization)



axion + quadratic model with stronger scale dependence

V =

1

2

m2�2
+ ⇤

4
cos

2⇡�

f

Some models match the templates accurately, but others don’t. 
Numerical calculations are needed for more than just an estimate



local template 
(used to report constraints)

axion model 
(accurate numerical calculation)



Bispectrum codes (in chronological order)

๏ BINGO, Hazra, Martin, Sreenath, Sriramkumar, arXiv:1201.0926, 1410.0252 — FORTRAN)  
single-field only; https://sites.google.com/site/codecosmo/bingo 

๏ Horner & Contaldi, arXiv:1311.3224  
single-field only (as far as I know); not publicly available 

๏ Sussex & QMUL code in development (C++) 
for 3D iso-surface plot, used 173,502 configurations (likely more than is needed for constraints)  
average of 0.15 s/configuration = 7h 12m CPU time

however, that headline figure is a bit misleading
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The squeezed limit is expensive to compute, but it’s the easiest part of the bispectrum to see



what does this spike mean?

⟨δφ(k1)δφ(k2)δφ(k3)⟩ ∼
1

k33

as k3 → 0

⟨δφ(k1)δφ(k2)δφ(k3)⟩ ∼
1

k3+α
3



LARGE VOLUME

small volume

compute a correlation function within a small volume

we can think of this as an average over all ways of 
fitting a fixed length into the volume

⟨δφ(k1)δφ(k2)⟩

now suppose there are long wavelength modes 
crossing the large volume. 

How does the correlation function depend 
on these long modes?



LARGE VOLUME

small volume

compute a correlation function within a small volume

we can think of this as an average over all ways of 
fitting a fixed length into the volume

⟨δφ(k1)δφ(k2)⟩

now suppose there are long wavelength modes 
crossing the large volume. 

How does the correlation function depend 
on these long modes?

depends on the background for the small volume



LARGE VOLUME

⟨δφ(k1)δφ(k2)⟩

now suppose there are long wavelength modes 
crossing the large volume. 

How does the correlation function depend 
on these long modes?

+ δφℓ
∂

∂φℓ
⟨δφ(k1)δφ(k2)⟩+ · · ·

δφℓ



LARGE VOLUME

⟨δφ(k1)δφ(k2)⟩

now suppose there are long wavelength modes 
crossing the large volume. 

How does the correlation function depend 
on these long modes?

+ δφℓ
∂

∂φℓ
⟨δφ(k1)δφ(k2)⟩+ · · ·

δφℓ

Finally, compute the correlation of the 
correlation in the small box with the long mode

δφℓ

( )〉〈



⟨δφ(k1)δφ(k2)δφ(k3)⟩ ∼ ⟨δφ(k3)δφ(k3)⟩
〈

∂

∂φℓ
⟨δφ(k1)δφ(k2)⟩

〉

in other words, roughly

k3 ≪ k1, k2
typical response of two-point 

function to a long-wavelength mode

so in the presence of a nontrivial bispectrum there is a correction to the power spectrum

∆⟨δφ(k1)δφ(k2)⟩ ∼
B(k1, k2, kℓ)

P (kℓ)

long wavelength field

short wavelength field

Is the amplitude systematically 
different depending on 

position on the long mode?

�rms �s

�`

∼
k−3−α
ℓ

k−3+(ns−1)
ℓ



We can search for this by looking for an upturn in the clustering power on large scales

turnover

matter power spectrum is roughly k4P (k)

structures stopped growing 
as they came back inside 
the horizon
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FIG. 15. Comparison of the marginalized posterior probabil-
ity distribution on fNL using the parts of our data set giving
the strongest contributions. We show the results from sin-
gle cross-correlation functions (top, green), auto-correlations
(center, blue), and from combined sub-samples of the whole
data set (bottom, red). The lines correspond to 68 and 95%
ranges, have been marginalized over the cosmological param-
eters, and include the WMAP7 CMB priors. The points
represent the mean values of the posterior likelihoods. The
results from single auto-correlation functions have also been
marginalized over one bias parameter and one stellar contam-
ination fraction (for the SDSS samples). The NVSS ACF
result appears weaker than expected beacuse it features a
double peak in fNL. To best present the relative constrain-
ing power of the cross-correlation measurements, we have
placed priors on the bias and stellar contamination parame-
ters, which significantly overstate the constraints these cross-
correlation allow on their own. See the main text for more
details.

generacy between  and fNL is present only when using
the quasar ACF alone.
We summarize the constraints on fNL in Table III and

in Fig. 15 for clarity. Here we compare the marginal-
ized results obtained when using the most constrain-
ing parts of our data set. We can see once again
that most results agree with Gaussian initial conditions,
and with each other. When considering single auto-
correlation functions, we marginalize over cosmology in-
cluding the WMAP CMB likelihood, and over one bias
parameter and one stellar contamination fraction (for the
data derived from SDSS). To better interpret the cross-
correlations on their own, we have assigned Gaussian pri-
ors on the relevant bias and stellar contamination pa-
rameters equal to the posteriors on these parameters ob-
tained from the ‘fair’ data. Applying these priors allows

us to accurately portray the relative importance of each
cross-correlation to our bottom-line results. Further-
more, we found that applying the bias prior to the auto-
correlations would increase the precision of their fNL con-
straints by a factor of two. Accounting for this factor, the
LRG auto-correlation is the best-constrained measure-
ment that enters the ‘conservative’ data set. When using
the LRG ACF only we recover a result consistent with the
recent analysis by Ref. [37], who found �45 < fNL < 195
at 95% using the spectroscopic sample of the CMASS
LRGs, which contains ⇠ 1/3 of the photoz sample we
use.

Notice that the factor (b1�1) within the bias correction
�b is the leading contribution that determines the size
of the fNL error bars. For this reason, the low-bias data
from 2MASS, the SDSS main galaxies, and HEAO bring
little information on fNL. Also the external correlations
of the quasars bring less contribution than it may be
expected, since the quasar bias at low redshift is also
low. This explains why the strongest constraints come
from NVSS, the LRGs and their external correlations.
For this reason, we have also checked the e↵ect of the
assumed NVSS bias evolution with one additional run
where the evolution parameter �NVSS is let free, and we
found no significant changes in the results.

The a
NL

Model We then extend our model to gen-
eralized PNG defined in Eq. (8): in addition to fNL,
we thus allow for scale dependence of the bias of any
slope aNL, which reduces to aNL = 2 in the local, scale-
independent case. We show our marginalized posterior
likelihood distribution in the top panel of Fig. 16, where
we can see that, in line with the lack of evidence for fNL,
there is no evidence for aNL either. The full marginalized
upper limit we find is aNL < 1.7 at 95%, but it must be
born in mind that there is an infinite degeneracy along
the direction fNL = 0 by construction: thus, this result
is strongly dependent on our adopted priors, rather than
being a “stand-alone measurement”. The correspondent
bound on nfNL

can be found using Eq. (10).

The g
NL

Model We finally consider the gNL model.
We shall here make the optimistic assumption that the
fitting formula of Eq. (7) is a reasonable approximation
to the e↵ect of gNL, keeping in mind that this may not be
accurate in all cases due to the low bias of our catalogs.
Under this assumption we find �4.5·105 < gNL < 1.6·105
(95%) if assuming fNL = 0. However as shown by
Refs. [64, 65], and as clear from Eq. (1), there is a de-
generacy between fNL and gNL, as both parameters pro-
duce a scale dependence of the bias of the same order
⇠ k�2; the degeneracy is alleviated by the di↵erent red-
shift dependences. This is indeed what happens when
we consider the complete model where both parameters
are left free: we can see in the bottom panel of Fig. 16
that the marginalized posterior presents this degeneracy,
as demonstrated with N -body simulations by Ref. [65].
Also in this case the Gaussian model remains well within
the 95% region: the marginalized constraints on the two
parameters are marginally degraded to �23 < fNL < 42

Galaxy survey measurements (from SDSS)


