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Motivations for a supersymmetric extension of the SM

Solves the hierarchy problem: the need to tune a bare Higgs mass
term to 14 digits in order to cancel quadratically divergent quantum
corrections

Unification of the running gauge couplings at a GUT scale of
∼ 2× 1016 GeV (a numerical accident?)

Automatically a dark matter candidate

→ Hard to give up, despite the absence of “sparticles” at the LHC
But supersymmetric extensions of the SM are not unique. The Minimal
Supersymmetric extension of the SM (MSSM) is just the simplest choice
(too simplistic ?), and at least some of the “pressure” is relieved in
non-minimal extensions → to discuss
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Minimal Supersymmetry (MSSM)

Every particle of the Standard Model (SM) has a “superpartner” with
different spin: (Boson + Fermion) form a Supermultiplet
→ Quantum corrections to Boson (Higgs) masses cancel

Quarks, Leptons ↔ Squarks, Sleptons (Scalars)
Gauge Bosons ↔ Gauginos (Fermions)
Higgs Boson(s) ↔ Higgsinos (Fermions)

Need at least two Higgs doublets since one cannot couple simultaneously
H† to up-quarks and H to down-quarks/leptons (as in the SM)
MSSM: Two Higgs doublets Hu, Hd with VEVs vu, vd ; tanβ ≡ vu/vd

Superpartners have the same dimensionless gauge and Yukawa couplings
(related to quartic scalar couplings), but different “ soft SUSY breaking”
masses; quadratically divergent quantum corrections still cancel if
Scalars (Squarks, Sleptons) and Gauginos have extra masses

All of the same order “MSUSY ”, expected to be of O(MHiggs)
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Problems of the MSSM

1) The µ-Problem:

Higgsinos ΨHu and ΨHd
– some of which are charged – have not been

observed at LEP (Mchargino >∼ 100 GeV)

→ a higgsino mass term µ ΨHu ΨHd
with |µ| >∼ 100 GeV is required, but

fermionic masses are supersymmetric, not soft SUSY breaking mass terms.

How can µ “happen” to be of the order of the other soft SUSY breaking
mass terms which determine the electroweak scale?
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Recall the generation of quark masses through the VEV of a Higgs scalar:

→ Generate a higgsino mass term through the VEV of an additional
scalar S :

µ ΨHu ΨHd
→ λ S ΨHu ΨHd

S gets a VEV from V (S) = m2
S |S2|+ κ2|S2|2 + . . . ,

m2
S = soft SUSY breaking mass term (negative),

〈
S2
〉
≈ −2m2

S/κ
2

→ λ 〈S〉 ≡ µeff is of the order |mS | ∼ MSUSY ∼ MHiggs X

Adding S to the MSSM in a SUSY way leads to the NMSSM
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2) The mass of the SM-like Higgs boson h:
(φ: Higgs doublet, h: its neutral CP-even component)

a) The Higgs mass in the Standard Model:

V (φ) = −µ2 |φ|2 + λ2 |φ|4 , its minimum vφ is at |vφ|2 =
µ2

2λ2

vφ is known since long from the W and Z masses: vφ ∼ 175 GeV

The mass Mh of the physical Higgs boson is given by the second derivative
of V (h) at the minimum:

M2
h = −2µ2 + 6λ2v2

φ = 4λ2v2
φ

→ even given vφ, Mh could not be predicted since is proportional to
the unknown quartic coupling λ
Now we know Mh ∼ 125 GeV→ λ ∼ 0, 36

→ If we would have known λ, we could have predicted the Higgs mass
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b) The SM-like Higgs mass in the MSSM:

Recall: Two physical neutral CP-even Higgs bosons h, H where, typically,
h ∼ mostly Standard Model-like, MH ∼ MA ∼ MH± ( >∼ 300 GeV)

Due to SUSY, the quartic Higgs couplings are proportional to the
electroweak gauge couplings ∼ g2

1 + g2
2 (like MZ in the SM)

→ The lighter state h has a mass Mh with

M2
h < M2

Z cos2 2β = M2
Z

(
tan2 β − 1

tan2 β + 1

)2

→ Large radiative corrections from heavy “stops” are needed in order to
explain Mh ∼ 125 GeV, but Mh � Mstop becomes unnatural

→ “Little Finetuning Problem”

Ulrich Ellwanger Beyond Minimal SUSY June 11, 2015 8 / 55



c) The SM-like Higgs mass in the NMSSM:

Recall: The additional singlet S has a Yukawa coupling λ S ΨHu ΨHd
to

the higgsinos

→ SUSY requires additional quartic Higgs self couplings proportional to
λ2, amongst others λ2 (HuHd )2

Due to the additional quartic coupling, the mass Mh of the mostly SM-like
Higgs boson can be larger:

M2
h ' M2

Z

(
cos2 2β +

2λ2

g2
1 + g2

2

sin2 2β

)

Highly welcome, less tuning required
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The Structure of the NMSSM

In terms of the superpotential W and superfields Ĥu, Ĥd and Ŝ :

WMSSM = µĤuĤd + . . . → WNMSSM = λŜĤuĤd +
κ

3
Ŝ3 + . . .

where . . . denote the Yukawa couplings to (s)quarks and (s)leptons

Extended Higgs sector:
The physical states are linear combinations of Hu, Hd and S which form

— 3 CP-even neutral scalars, typically a mostly SM-like neutral Higgs h,
a “MSSM”-like heavy scalar H, and a mostly singlet-like scalar HS

(but all states are mixtures in general)

— 2 CP-odd neutral scalars, typically a “MSSM”-like heavy pseudoscalar
A and a mostly singlet-like pseudoscalar AS

— “MSSM”-like charged scalars H±
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The “MSSM”-like states H, A and H± are nearly degenerate with masses
>∼ 300 GeV from constraints on MH± from b → s γ
(can be avoided assuming cancellations with SUSY diagrams)

The mostly singlet-like states HS and AS can have any mass; a light scalar
HS and a light pseudoscalar AS are “natural” in the case of an
approximate Peccei-Quinn symmetry where κ� 1.

Note: if MHS
< Mh, mixing of HS with h (

!
= H125) increases the mass of h

→ MHS
< Mh is preferred!
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Possible Phenomenological Impact of the Extended Higgs Sector

Modified properties of the SM-like Higgs boson through mixing

Possible detection of the additional states as a single resonance

Possible Higgs-to-Higgs decays into light HS /AS
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Possible modifications properties of the SM-like Higgs boson h

— Through mixing of h with HS : all couplings of h get reduced
→ Production cross sections get reduced,

but branching ratios remain unchanged

— Through mixing of h with H which has a tanβ enhanced coupling to
b-quarks/τ -leptons:
→ Through negative interference,

the coupling of h to b-quarks/τ -leptons can get reduced
→ The total width gets reduced
→ Branching fractions into γγ, ZZ and WW get enhanced
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Also: if h has a singlet component, the coupling λ Sψuψd generates a
charged higgsino loop contribution to h→ γγ

→ this branching fraction can be larger than in the Standard Model!

→ this can also happen for HS !
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Status of the 125 GeV Higgs couplings
Def.: Signal rates µ = (production rates)×(branching fractions) relative to
the Standard Model predictions
Measured averages over production modes, decomposed into final states:

) µSignal strength (
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→ More precise measurements could give us a hint
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Search for/constraints on light HS , AS

HS , AS decay approx. like a SM-Higgs boson of similar mass:

If heavier than ∼ 10 GeV: up to 85% into bb̄, up to 8% into τ+τ−;

But: If HS mixes with h and H, the coupling to bb̄ can be suppressed →
the total width gets reduced → HS → γγ can be enhanced by a factor ≈ 7

If 3.6 GeV < MAS
, MHS

<∼ 10 GeV: mostly into τ+τ−

If MAS
<∼ 10 GeV and tanβ very large such that the coupling of AS to

b-quarks is not too small:
→ Constraints from Υ1,2 → AS + γ (BaBar, Belle), and possible
distortions of the spectrum of the excited CP-odd ηb states

If MAS
, MHS

<∼ 3.6 GeV: decays into gg , cc̄ , ss̄, µ+µ−
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Direct production of a lighter Higgs boson at LEP:

The production of HS in e+ + e− → Z ∗ → Z + HS requires some doublet
component ξ of HS

Constraints from LEP Higgs
searches in the plane ξ2 −MH

(Assuming SM-like BR into bb̄):

These allow, e.g., for
ξ ∼ 0.5 for MH1 ∼ 95− 105 GeV!
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Possible detection of the additional states as a single resonance:

Searches by ATLAS in the diphoton channel:
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Possible signal rates in the diphoton channel in the NMSSM, taking LEP
constraints into account (from M. Rodŕıguez): Yellow: ATLAS limits
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→ The LHC becomes more sensitive to additional light Bosons than
LEP!
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If MAS
, MHS

<∼ 60 GeV: decays of h = H125 → HSHS , ASAS are possible

Note: Large branching fractions of H125 → HH/AA would reduce the
branching ratios of H125 into the observed channels, and hence the
measured signal rates→ indirect constraints (from 1302.5694)!

Assuming SM-like production cross sections: BR(H125 → HH/AA) <∼ 20%

Allowing for enhanced ggF production rate: BR(H125 → HH/AA) <∼ 29%

(enhanced production rates in VH/VBF are practically impossible)
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Again: the prospects for the discovery of H125 → 2(HS/AS ) at the LHC
depend strongly on the mass(es), and hence on the dominant decays of
HS/AS :

– If MHS/AS
>∼ 10 GeV: Decays HS/AS → bb̄ are dominant, but

H125 → 2(HS/AS )→ 2(bb̄) is very hard to see above the SM background

– If 3.5 GeV <∼ MHS/AS
<∼ 10 GeV: Decays HS/AS → τ+τ− are dominant,

the prospects are better

– If MHS/AS
<∼ 3.5 GeV: Decays HS/AS → µ+µ− are dominant, much

better visibility!
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(Selection of) searches at run I:
Left: Search for HS → ASAS → 4µ (CMS)

Right: Search for h→ ASAS → 4τ (ATLAS)
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If MAS
<∼ MHS

/2: decays HS → ASAS are typically dominant:

σHS
(ggF )/σHSM (ggF )× BR(HS → ASAS ) as function of MHS

(left) and
MAS

(right) (from 1405.6647; green: favoured by MSUGRA)
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→ Must keep an eye on ggF → HS → ASAS with MHS
< 125 GeV,

or even h→ HSHS → (ASAS ) + (ASAS )!
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Another possibility:

Decays of H/A with MH/A >∼ 300 GeV into a pair of HS/AS

The higher energy allows to detect HS/AS in bb̄ decays

Searches for ggF → H/A→ h + h by ATLAS and CMS:
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→ Interesting prospects for the run II
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Possible Impact of BMS on Searches for SUSY

Due to R-parity, a sparticle decays always into a sparticle + SM
particle(s). The lightest sparticle is stable!
Notation: g̃ : gluino, q̃: squark, χ̃0

i : neutralino = bino/wino/higgsino,
χ̃±i : chargino = wino/higgsino,
Searches for SUSY employ cuts on ET

miss, assumed to be generated by
escaping invisible neutralinos χ0

1 (LSPs) at the end of decay cascades:
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→ Lower bounds on squark/gluino masses in the MSSM of up to 1.7 TeV
(ATLAS, assuming MSUGRA):
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Stable, stopped g̃ R-hadron 0 1-5 jets Yes 27.9 m(χ̃0
1)=100 GeV, 10 µs<τ(g̃)<1000 s 1310.6584832 GeVg̃

Stable g̃ R-hadron trk - - 19.1 1411.67951.27 TeVg̃

GMSB, stable τ̃, χ̃0
1→τ̃(ẽ, µ̃)+τ(e, µ) 1-2 µ - - 19.1 10<tanβ<50 1411.6795537 GeVχ̃0

1

GMSB, χ̃0
1→γG̃, long-lived χ̃0

1 2 γ - Yes 20.3 2<τ(χ̃0
1)<3 ns, SPS8 model 1409.5542435 GeVχ̃0

1

q̃q̃, χ̃0
1→qqµ (RPV) 1 µ, displ. vtx - - 20.3 1.5 <cτ<156 mm, BR(µ)=1, m(χ̃0

1)=108 GeV ATLAS-CONF-2013-0921.0 TeVq̃

LFV pp→ν̃τ + X, ν̃τ→e + µ 2 e, µ - - 4.6 λ′311=0.10, λ132=0.05 1212.12721.61 TeVν̃τ

LFV pp→ν̃τ + X, ν̃τ→e(µ) + τ 1 e, µ + τ - - 4.6 λ′311=0.10, λ1(2)33=0.05 1212.12721.1 TeVν̃τ

Bilinear RPV CMSSM 2 e, µ (SS) 0-3 b Yes 20.3 m(q̃)=m(g̃), cτLS P<1 mm 1404.25001.35 TeVq̃, g̃
χ̃+1 χ̃

−
1 , χ̃+1→Wχ̃0

1, χ̃
0
1→eeν̃µ, eµν̃e 4 e, µ - Yes 20.3 m(χ̃0

1)>0.2×m(χ̃±1 ), λ121,0 1405.5086750 GeVχ̃±
1

χ̃+1 χ̃
−
1 , χ̃+1→Wχ̃0

1, χ̃
0
1→ττν̃e, eτν̃τ 3 e, µ + τ - Yes 20.3 m(χ̃0

1)>0.2×m(χ̃±1 ), λ133,0 1405.5086450 GeVχ̃±
1

g̃→qqq 0 6-7 jets - 20.3 BR(t)=BR(b)=BR(c)=0% ATLAS-CONF-2013-091916 GeVg̃
g̃→t̃1t, t̃1→bs 2 e, µ (SS) 0-3 b Yes 20.3 1404.250850 GeVg̃

Scalar charm, c̃→cχ̃0
1 0 2 c Yes 20.3 m(χ̃0

1)<200 GeV 1501.01325490 GeVc̃

Mass scale [TeV]10−1 1
√

s = 7 TeV
full data

√
s = 8 TeV

partial data

√
s = 8 TeV

full data

ATLAS SUSY Searches* - 95% CL Lower Limits
Status: Feb 2015

ATLAS Preliminary√
s = 7, 8 TeV

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.
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Summary of CMS SUSY Results* in SMS framework

CMS Preliminary

m(mother)-m(LSP)=200 GeV m(LSP)=0 GeV

ICHEP 2014

lsp
m⋅+(1-x)

mother
m⋅ = xintermediatem

For decays with intermediate mass,

Only a selection of available mass limits
*Observed limits, theory uncertainties not included

Probe *up to* the quoted mass limit

Limits depend on the assumed decay cascades!
Often: “Simplified Models” which assume heavy sparticles except for the
one aimed at (gluinos, stops, ...)
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And if there is a light singlino-like LSP χ0
1 in the NMSSM?

Due to its small couplings to all sparticles, these will decay first into the
NLSP χ0

2 (typically Bino-like); only subsequently the NLSP χ0
2 will decay

into the LSP χ0
1 + X ,

NLSP

LSP

X
.    .    .    .    .

where ”X” decays into SM particles (X = Higgs boson, Z ,...)
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If the available phase space is narrow, MNLSP − (MLSP + MX )� MNLSP ,
the energy (momentum) ELSP transferred from the NLSP to the LSP is
proportional to the ratio of masses:

ELSP

ENLSP
' MLSP

MNLSP

→ If the LSP is light and MX ∼ MNLSP −MLSP , little (missing
transverse) energy is transferred to the LSP; the transverse energy is
carried away by X

→ If X decays do not give rise to Emiss
T , the Emiss

T signature disappears!

Possible states X :

Z , W : Have leptonic decays (incl. neutrinos), lead to some Emiss
T

H125: The leptonic decays H125 →WW /ZZ → ... lead to some Emiss
T
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Worst case with little Emiss
T :

— X = H1, a NMSSM specific light Higgs boson with MH1 < MZ

(Just occasionnaly: H1 → τ+τ− → ... + neutrinos)

— no Zs/Ws (decaying possibly into neutrinos) in squark decay cascades;
if wino/higgsino masses >∼ squark masses:

q̃ → q + bino → q + singlino + H1,
g̃ → q + q̃ → ...

Example: MNLSP ∼ Mbino ∼ 89 GeV, MH1 ∼ 83 GeV,
MLSP ∼ Msinglino ∼ 5 GeV
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Spectrum of Emiss
T from squark/gluino production at 8 TeV:

Compare
— the MSSM with a 89 GeV bino as LSP, would be ruled out!
— the NMSSM with the additional bino → H1+ singlino cascade
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Inlet: after Cuts on PT of 5 jets, Emiss
T /meff > 0.2 where

meff ∼
∑ |pT |jets
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Where does the remaining Emiss
T come from?

H1 has branching fractions similar to HSM of the same mass:
∼ 8% into τ+τ− leading to neutrinos in the final state;
∼ 85% into bb̄ with partially leptonic decays

Still: The example with Msquarks ∼ 830 GeV, Mgluino ∼ 860 GeV,
Mstops,sbottoms ∼ 810− 1060, Mcharginos ∼ 830− 950 GeV passes all LHC
constraints

The only LHC allowed scenario with all sparticle masses below ∼ 1 TeV!
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What would be the signature of squark/gluino production in such a case?

Jets + the remnants of two Higgs states, but

MH not known, e.g. MH = 125 GeV, or MH ∼ 50− 90 GeV

→ Look for, e.g., one bb̄ pair and one τ+τ− pair (+ cuts on pT of jets),
and a bump at the bb̄ invariant mass:
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Ĵ: “Fat” jet constructed with R = 0.5 in the direction of two b-jets, after
cuts on 4 jets with large pT and asking for 2 τh

(Simulation from 1412.6394)

Left: bino → h + singlino;
right: bino → h + singlino or bino → HS + singlino
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Constraints from chargino/neutralino searches at the LHC:

Most relevant:

W ∗ → χ+
1 + χ0

2 → (W→lept + χ0
1) + (Z→2lept + χ0

1)

→ 3 leptons (e± or µ±) + Emiss
T

Often interpreted for χ+
1 , χ

0
2 wino-like (degenerated), χ0

1 bino-like,
no χ0

2 → χ0
1+Higgs decays (“simplified model”)
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From ATLAS-CONF-2013-035:
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Applying the same bounds to the singlino-higgsino scenario in the
NMSSM:
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Blue hatched: excluded by LEP; red curve: excluded by ATLAS
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→ Alleviation of the previous bounds since the W -higgsino2 coupling is
smaller than the W -wino2 coupling (Clebsch Gordan coeff.), and χ0

2,3 have
some singlino component
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And if χ0
2 decays into χ0

1+ a Higgs boson?

Look, e.g., for a lepton from
W+ and two photons from the
Higgs:

From ATLAS 1501.07110:
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No excess is seen since Mγγ = 125± 5 GeV was required!

Lesson: If you don’t look for, you can miss additional Higgs bosons!
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Dark Matter

From measurements of the CMB etc. by WMAP/Planck we know quite
precisely the amount of Dark Matter in the present universe:

Ωch
2 = 0.1188± 0.0010

where Ωc is the critical matter + dark energy density, h the Hubble
constant normalised to 100 (km/sec)/Mpc.

Observation of the
bullet cluster:
Red: Visible matter
Blue: Dark Matter
from gravitational
lensing
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Searched for in direct and indirect detection experiments

Standard lore:
The early universe is a bath of all (s)particles in chemical equilibrium.
Once temperature decreases, heavy (s)particles decay into lighter ones.
Stable (s)particles are left over, unless they pair-annihilate

→ The Dark Matter relic density depends on 〈vσ(v)〉 where σ(v) is its
annihilation cross section at the time of “freeze out”, i.e. at temperatures
T ≈ Mχ0

1
/10

(later they become too deluted due to the expanding universe)

Assuming 〈vσ(v)〉 independent of v (as in the case of the exchange of a
heavy particle with mass � Mχ0

1
):

〈vσ(v)〉 = “thermal cross section” ∼ 3× 10−26 cm3/sec
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Its annihilation cross section today, relevant for indirect detection, can
differ significantly from the thermal cross section if annihilation proceeds
via a resonance X and 〈vσ(v)〉 depends on v :

Standard Model

Particles

1
2 2

χ

χ0

0

p − MX

If X = vector (Z ) or scalar (Higgs):
〈vσ(v)freeze out〉 ∼ v2 � 〈vσ(v)today, v�c〉

If X = pseudoscalar like AS (NMSSM):
〈vσ(v)freeze out〉 ∼ const ∼ 〈vσ(v)today, v�c〉
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In any case, if MX is just a bit larger than 2Mχ0 :

Standard Model

Particles

1
2 2

χ

χ0

0

p − MX

p2 = (pχ0 + pχ0)2 is close to M2
χ0 at the moment of freeze-out

(T ≈ Mχ0/10)
→ After averaging 〈vσ(v)freeze out〉, a large contribution from the pole

Today: 〈vσ(v)today, v�c〉 is below the pole, below 〈vσ(v)freeze out〉

→ Cannot expect 〈vσ(v)today〉 to be given by the thermal cross section
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The direct detection cross section depends on its scattering cross section
off protons/neutrons, generated by the exchange of Higgs boson(s)

Higgs boson(s) couple to protons/neutrons via
— the strange quark see
— a top quark loop to gluons (see ggF)

Z -exchange: generates only a spin-dependent cross section if χ0
1 is a

Majorana Fermion as in Susy
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Supersymmetry

The lightest neutralino χ0
1 is automatically a candidate for Dark Matter

Expected mass range: a few GeV ... a few hundred GeV (cold, not
“warm”)

MSSM: a superposition of a bino/wino/neutral higgsinos

Pure bino (most natural): No bino-bino-Z or bino-bino-Higgs couplings
→ σ(v) too small, relic density too large
Way out: bino-slepton-lepton vertex, but requires light sleptons
(constrained by the LHC)

Pure higgsino: higgsino-higgsino-Z coupling makes σ(v) too large,
relic density too small (unless Mhiggsino >∼ 1 TeV)

Way out: mixture of bino-higgsino, still constrained by Z → χ0
1χ

0
1 (LEP) if

Mχ0
1
< 45 GeV, and direct detection due to a Higgs-higgsino-bino-vertex.
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NMSSM: χ0
1 can have a large singlino (small higgsino) component

A light χ0
1 is compatible with constraints from Z → χ0

1χ
0
1,

good relic density due to pair annihilation via AS

Direct detection cross section can be small since

— the singlino has small couplings to the exchanged Higgs boson

— additional Higgs boson(s) can be exchanged and interfere negatively
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Occasionally one has seen hints for “light” dark matter in direct detection:

Hints for DM in the 6 - 40 GeV mass range have been ruled out by LUX,
but even LUX is not very sensitive to dark matter with Mχ0 <∼ 6 GeV
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Note: The sensitivity cannot be increased arbitrarily; at some stage direct
detection experiments have to take the background from solar neutrinos
into account:
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And what can we expect in the NMSSM with a mostly singlino-like LSP?
Scan the parameter space, impose good relic density and constraints from
LUX; possible direct detection cross sections:
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A direct detection signal above the neutrino background (yellow) is not
guaranteed!
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Duality between direct detection of dark matter, and production of dark
matter at the LHC:

Recall the diagram
for direct detection:

Turn it around by 90o to the right→ you get the diagram for
p + p → h→ χ0 + χ0, i.e. the production and the decay of a Higgs into
dark matter (if Mχ0 < Mh/2)

→ Constraints on invisible Higgs
decays with BR < 0.2...0.8 give you
constraints on the direct detection
cross section:
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Indirect detection:

Look for remnants of dark matter annihilation into SM particles

Where? Where the dark matter density is expected to be large
→ In the center of galaxies

Our galaxy: Close, but dirty (dust), dark matter density profile subject to
uncertainties

Dwarf galaxies (∼ spherical): Cleaner (less dust), less uncertainties in the
dark matter density profile
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What? Stable SM particles in the cosmic rays, preferably those whose
“astrophysics background” (pulsars, ...) is expected small:

Anti-protons, positrons
→ charged, bent trajectories in the galactic magnetic field
→ the location of production is difficult to estimate

Energetic photons (gammas) directly from the location of production
Expected flux depends on the two initially produced SM particles:
bb̄ (case of a Higgs in the s-channel), τ+τ− (light Higgs),
W+W−, µ+µ−, qq̄,...

Still: astrophysics background not very well known, under debate
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Hints for DM in the 6 - 40 GeV mass in the search for gamma rays from
our galactic center by FermiLAT,
interpreted in terms of different SM particle pair production processes:
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An explanation requires an annihilation cross section today similar to the
thermal cross section and Mχ0 ≈ 40 GeV

→ Impossible in the MSSM

Can be explained in the NMSSM with a light singlino-like χ0, with a good
relic density from annihilation via AS

(Cahill-Rowley et al., 1409.1573)
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BUT: Recent upper bounds on gamma rays from dwarf galaxies by
FermiLAT, interpreted in terms of bb̄ SM particle pair production and
compared to models explaining the “galactic center excess”:
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Thermal Relic Cross Section
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Still marginally compatible with a NMSSM singlino explaining the galactic
center excess, depending on the dwarf/milky way dark matter profiles
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Summary

Since Supersymmetry solves simultaneously several problems of the
Standard Model, it remains an attractive scenario

Its minimal version is under pressure from the non-observation of
sparticles, also – somewhat less – from the measured Higgs mass and the
non-observation (direct and indirect) of dark matter

Non-minimal Supersymmetry (here: the NMSSM) alleviates this pressure,
more attractive nowadays

Hints/evidence for non-minimal Supersymmetry can come from
unexpected corners (at the LHC):
— Higgs bosons instead of ET

miss in squark/gluino production
— Extra Higgs bosons with masses below/above 125 GeV
— Higgs-to-Higgs decays of H125 and/or extra Higgses

Stay tuned!
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A rather audacious philosopher, Hamlet, Prince of Denmark, I think, said
that there are many things in heaven and on earth that are not mentioned
in our compendia.

If the simple fellow, who as is well known was not quite in his right mind,
was mocking our physics compendia, we might confidently reply to him:
very well, but then there are also many things in our compendia that can
be found neither in heaven nor on earth.

(Georg Lichtenberg, German scientist and philosopher, 1742–1799)
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