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A historical prelude: Goldstone theorem

To understand the importance of the Brout-Englert-Higgs mechanism we need
to go back to the Goldstone theorem

Our main characters:

¢ Aconserved current 9, J" =0

¢ A set of scalar fields ¢,, on which the current can act |J,., ¢a] = itap®p
Example: (1) current and a complex scalar field ¢ : [J,,, ¢| = i¢

If (0|¢|0) £ 0 (spontaneous symmetry breaking) the theory contains one
massless “Goldstone” boson

Example of a Lagrangian leading to Goldstone bosons
L=0,0 0 )+ p*d*d — No* )

Note: the scalar field ¢ does not need to be an elementary field



Proof of the Goldstone theorem

The basic object entering the Goldstone theorem is the commutator of the
current with the scalar field

(0117, (), $(0)]]0) = / 'p [P 3" 64(py — p){017,(0)[N) (N|6(0)]0)

—e~ TN 5 (pn — p){0]¢(0)|N)(N].J,.(0)]0)

Exercise. Derive the above expression

Crucial point of Goldstone theorem is the Lorentz decomposition of the
expectation value on the complete set of states | V)

> 5 (ow = P01 O)|N) (V16(0)10) = in,O()o(r")

> "6 (o — p)(016(0)[N)Y (N[ J,(0)]0) = —ip, O (") p(p?)



Proof of the Goldstone theorem

Crucial point of Goldstone theorem is the Lorentz decomposition of the
expectation value on the complete set of states | V)

> 8o = P01 (O)|N) (V16(0)10) = in,©()o(r")

D8 (pn — p)(0(0) N)(N1J,(0)[0) = ip.©(p")A(p*)

Exercise. Show that, because of causality, ﬁ(pz) = —p(p2)



Proof of the Goldstone theorem

The basic object entering the Goldstone theorem is the commutator of the
current with the scalar field

Ol (), @(0)]|0) = 0, /OoodmZA(a:,mz)p(mQ)

Az, m?) = /d4p O(p?)d(p* — m?) [eipx - e_im} = (O+m*)A(x,m?) =0

Exercise. Show that 9, J* = 0and Q|0) # 0 = p(m?) = N§(m?*) with N # 0,
l.e. there exists at least one massless state, a Goldstone boson



Problems with Goldstone theorem

There are as many massless Goldstone boson as the number of broken
generators. However, no one has ever seen any. What is their fate?



Longitudinal waves in plasmas
Maxwell’s equations in Lorenz gauge k*A* (k) = 0
AR (k) = (w? — PR A (k) = —JH(k)
If J#(k) o< A*(k) we can induce a mass term for the electromagnetic field

In spite of a local conservation law, the corresponding gauge bosons are not
massless [Anderson ‘64]

Example. In the propagation of a plasma with velocity of sound ¢,

J (w7 k) — _w2 B 03122 Wp A (UJ, k) J1 (wv k) — _prJ_ (wa k)
ne? . .
w, = 1/ — Is the plasma frequency of the medium
m

What have longitudinal waves in plasma have to do with Goldstone theorem?



Longitudinal waves in plasma

In a plasma, the ions are still, giving a uniform charge density po = n.e

The fluctuations of the electron density give a longitudinal wave, that
propagates with the speed of sound of the plasma



Relation to Goldstone theorem

In a non-relativistic theory, there exists a special reference frame n" (e.g. the
rest frame of the ions in a plasma)

ppp(p®) = pupr(p®, 1 - p) + nyp2(p®,n - p) + C3nyd® (p)
Imposing current conservation 9, J" = 0

Pup1 + nup2 — pud(p°)pa + [p*ny, — pu(nk)] ps

In non-relativistic theories, p4 can be zero, thus avoiding the problem of
Goldstone bosons.

Problem. In relativistic theories there seem to be no preferred reference
frame, yet Goldstone bosons seem not to exist



Higgs’ solution to Goldstone problem

BROKEN SYMMETRIES, MASSLESS PARTICLES AND GAUGE FIELDS

P. W. HIGGS
Tait Institute of Mathematical Physics, University of Edinburgh, Scolland

Recefved 27 July 1964

Recently a number of %e ple have discussed
the Goldstone theorem 1,2): that any solution of a
Lorentz-invariant theory which violates an inter-
nal symmetry operation of that theory must con-
tain a massless scalar particle. Klein and Lee 3
showed that this theorem does not necessarily ap-
ply in non-relativistic theories and implied that
their considerations would apply equally well to
Lorentz-invariant field theories. Gilbert 4 , how=-

ever, gave a proof that the failure of the Goldstone
theorem in the nonrelativistic case is of a type
which cannot exist when Lorentz invariance is im-
posed on a theory. The purpose of this note is to
show that Gilbert's argument fails for an impor-
tant class of field theories, that in which the con-
served currents are coupled to gauge fields.
Following the procedure used by Gilbert 4), let
us consider a theory of two hermitian scalar fields



Higgs’ solution to Goldstone problem

In order to quantise gauge theories, one needs to introduce a gauge-fixing
condition, e.g. Coulomb gauge n, A" =0

i(01[Au(2), 61(0)]10) g 1. = Pupr + [P*n — pu(np)] p2 + Canyd® (p)
Combining with Maxwell's equations
o, FH = J"Y F,, =0,A, —0,A,
4
i{01[Ju(x), ¢1(0)]|0) .. = [P*ru — pu(mp)] p(27, (np))

|

In a broken gauge symmetry there are no massless Goldstone bosons



The Higgs model
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BROKEN SYMMETRIES AND THE MASSES OF GAUGE BOSONS

Peter W. Higgs
Tait Institute of Mathematical Physics, University of Edinburgh, Edinburgh, Scotland
(Received 31 August 1964)

In a recent note! it was shown that the Gold-
stone theorem,? that Lorentz-covariant field
theories in which spontaneous breakdown of
symmetry under an internal Lie group occurs
contain zero-mass particles, fails if and only if
the conserved currents associated with the in-
ternal group are coupled to gauge fields. The
purpose of the present note is to report that,
as a consequence of this coupling, the spin-one
quanta of some of the gauge fields acquire mass;
the longitudinal degrees of freedom of these par-
ticles (which would be absent if their mass were
zero) go over into the Goldstone bosons when the
coupling tends to zero. This phenomenon is just
the relativistic analog of the plasmon phenome-
non to which Anderson® has drawn attention:
that the scalar zero-mass excitations of a super-
conducting neutral Fermi gas become longitudi-
nal plasmon modes of finite mass when the gas
is charged.

The simplest theory which exhibits this be-
havior is a gauge-invariant version of a model
used by Goldstone? himself: Two real* scalar
fields ¢,, ¢, and a real vector field A“ interact
through the Lagrangian density

2 2
L=-4(ve) -4(ve,)

2 2
Vig, "+ )=4F P ()

about the “vacuum?” solution ¢,(x) =0, @,(x) = @,:

M _
) {SM(A(pl)—echAu}—O, (2a)
{82492V " (92 Ag,) =0, (2b)
o FM=eq (M (ag))-e0 A e (2c)

Equation (2b) describes waves whose quanta have
(bare) mass 2¢,{V'"(¢,®)}*'?; Egs. (2a) and (2¢)
may be transformed, by the introduction of new
variables

- _ -1
Bu Au (eqao) au(Acpl),

G =8 B -8B =F (3)
717 VI VS V) Ly

into the form

s B" =0, 2

K
U B =0. (4)

uy 2
BVG +e ch
Equation (4) describes vector waves whose quanta
have (bare) mass eg,. In the absence of the gauge
field coupling (e =0) the situation is quite differ-
ent: Equations (2a) and (2c¢) describe zero-mass
scalar and vector bosons, respectively. In pass-
ing, we note that the right-hand side of (2¢) is
just the linear approximation to the conserved
current: It is linear in the vector potential,



The Higgs model

Consider a pair of scalar field ¢1, ¢2 coupled to an electromagnetic field A,

1 1 1

L= §(Du¢1)(D“¢1) + §(Du¢2)(D“¢2) -V (|¢]?) - 1 B
o OT+ &5
Dypr = 0udr — eAugo D, ¢a = 0,02 + eAudn 0|° = 5
The potential exhibits spontaneous symmetry breaking, e.g. (0|¢1]|0) = v # 0,
l.e. it has a minimum for V(o)
’¢’ B ﬁ This costs too much
energy! | think I'll
Example. The pOtent|a| hang out down there,
A
V(I6l?) = =26l + 5 (16[*)?
has a minimum for /
2 z
2 1
T
9l =1/~

A é5



Higgs model: mass for the photon

Expand all fields around the minimum

Vi
¢1 = v+ m P2 >~ 12 V(lo|*) ~ Vg +7v771

and linearise the equations of motions, assuming A, ~ 7 ~ 72 K v
O (0m +evA,) =0"A, =0 A, = A, +0u(n2/ev)

O'F,, =J, ~—ev(0,n2 + evA,) = —(ev)QA;L
V(lgl*)

A

This is the Anderson condition, giving
a mass my = ev to the photon

Note. The fact that the photon gets a

mass relies only on the fact that the ©©

scalar field gets a VEV

P2



The calculation of Englert and Brout

BROKEN SYMMETRY AND THE MASS OF GAUGE VECTOR MESONS*

F. Englert and R. Brout
Faculté des Sciences, Université Libre de Bruxelles, Bruxelles, Belgium
(Received 26 June 1964)

It is of interest to inquire whether gauge
vector mesons acquire mass through interac-
tion'; by a gauge vector meson we mean a
Yang-Mills field® associated with the extension
of a Lie group from global to local symmetry.
The importance of this problem resides in the
possibility that strong-interaction physics orig-
inates from massive gauge fields related to a
system of conserved currents.® In this note,
we shall show that in certain cases vector
mesons do indeed acquire mass when the vac-
uum is degenerate with respect to a compact
Lie group.

Theories with degenerate vacuum (broken
symmetry) have been the subject of intensive
study since their inception by Nambu.*™® A
characteristic feature of such theories is the
possible existence of zero-mass bosons which
tend to restore the symmetry.”»® We shall
show that it is precisely these singularities
which maintain the gauge invariance of the
theory, despite the fact that the vector meson
acquires mass.

We shall first treat the case where the orig-
inal fields are a set of bosons ¢4 which trans-
form as a basis for a representation of a com-
pact Lie group. This example should be con-
sidered as a rather general phenomenological
model. As such, we shall not study the par-
ticular mechanism by which the symmetry is
broken but simply assume that such a mech-
anism exists. A calculation performed in low-
est order perturbation theory indicates that

those vector mesons which are coupled to cur-
rents that “rotate” the original vacuum are the
ones which acquire mass [see Eq. (6)].

We shall then examine a particular model
based on chirality invariance which may have a
more fundamental significance. Here we begin
with a chirality-invariant Lagrangian and intro-
duce both vector and pseudovector gauge fields,
thereby guaranteeing invariance under both local
phase and local y,-phase transformations. In
this model the gauge fields themselves may break
the y; invariance leading to a mass for the orig-
inal Fermi field. We shall show in this case
that the pseudovector field acquires mass.

In the last paragraph we sketch a simple
argument which renders these results reason-
able.

(1) Lest the simplicity of the argument be
shrouded in a cloud of indices, we first con-
sider a one-parameter Abelian group, repre-
senting, for example, the phase transformation
of a charged boson; we then present the general-
ization to an arbitrary compact Lie group.

The interaction between the ¢ and the A m
fields is

H . =ieA“¢*3“¢—ez¢*¢A “A " (1)
where ¢ = (¢, +i@,)/V2. We shall break the
symmetry by fixing (¢) #0 in the vacuum, with
the phase chosen for convenience such that
(@) =(p® ={pp/V2.

We shall assume that the application of the



Higgs model: massive scalar boson

Expand all fields around the minimum

v
¢1 ~v+m P2 2 12 V(lo|*) ~ Vg +7v ni

and linearise the equations of motions, assuming A, ~ 7 ~ 72 K v

(O+v*Vg)ym =0

This is the equation for a scalar ""Higgs™ boson of mass my = v/ V)

4 Vo)

—

Note. The fact that a boson is found
relies on the reliability of the linear

approximation, i.e. quantum fluctuations \ @

leave 11 around the minimum 7 e
N

Im¢

Re ¢



The Higgs field in the Standard Model

The Standard Model for EW interactions has SU(2) x U(1) gauge symmetry

| | F!, =0,W, = 0,W), — goc?* W)W
Lgange = =7 Tr(Fyy F") — - By, B

4 B!, =09,B, —0,B,

To give a mass to the vector bosons we introduce a complex Higgs doublet
_|_
= (%)

Ly = (D*®)*(D,®) — V(®*d)

with a Lagrangian

O —
Dy =1(0, + ig—;BM) +igos - W,



The BEH mechanism in the Standard Model

Impose spontaneous symmetry breaking

1 [ 93 +igy _ f ZU_Q
‘I’—@Ulwz) Oénf0) =v#£0 = (0jpld|0) =

This is enough to give mass to the vector bosons through the coupling with the
Higgs field, without any information on the potential

1

_— Wi = 7 (W, FiW?)

2 2 %
_ NV
| ”73B 9o gi192 3 )
8 Wy Bu) ( —9192 97 B*




Vector boson mass eigenstates

Diagonalising the mass matrix one obtains the masses of the eigenstates, the
W and Z bosons and the photon




The VEV of the Higgs field

To measure the VEV of the Higgs field we need the coupling g2, which we
obtain from weak decay, involving left particles only

—

L= < JL ) Low =iLPL D, =1 (au + ig—;BNYW) + iggg W,

/ )
- =
W
»LLL\,\j » U e
/ = e /
Ve

Gr g5

N

= v=(V2Gp) /% ~ 246 GeV

My = —go

v
2



The Higgs potential in the Standard Model

The Higgs potential in the Standard Model is the simplest compatible with
spontaneous symmetry breaking and renormalisability

2
V(D) = —20*® + \(0*D)? v = “7

Expanding around the minimum of the potential, as follows

CID—L V24T
V2 \ v+ H+id

we find a single neutral Higgs boson H with a mass mg = vv 2\

Recently LHC has discovered a boson compatible with the Higgs of the
Standard Model, with a mass mgy ~ 125 GeV

This is enough to fix all the parameters of the Higgs potential

1~ 88.8 GeV A~ 0.13



Stability of the Higgs potential

In order to have spontaneous symmetry breaking, we need to have A\ > 0

But the value of A can change with the value of ¢ — problem with the stability
of the electroweak vacuum

A v AV

Stable Metastable

o /\ o
S— L N -

Fermi Planck Fermi Planck

To compute the running of A we need to introduce the interaction of the Higgs
boson with fermions, which are Yukawa interactions



Fermion masses

To compute the running of A we need to introduce the interaction of the Higgs
boson with fermions, which are Yukawa interactions

Lyukawa = _ilileL,i(I)dR,j — iLZjQL,i(i)UR,j — ilile_;z'(I)eR,j + h.c.

In the Standard Model ¢ — ioco®* (otherwise 2HDM)

At the minimum of the Higgs potential
b =— O =—
V2 ( v ) v2 \ 0

after diagonalisation of the Yukawa couplings each fermion acquires a mass

(V)



Higgs interactions

Expanding Lgauge, Lyukawa @and V(P) around the minimum of the Higgs
potential we find all interactions of SM particles with the Higgs

L=—gurffH+ gHé{H 3 . 9H;{4HH 4

+ oy V, V¥ (gvaH + QHZVV HQ)

In the SM all these couplings are constrained and proportional to the masses
of fermions and to the masses of boson squared

mf B Qm%/ o Qm%/ oW =
ngf:T gaHVV — JHHVV — U2 5221/2
3m>2 3m?
JHHH — H JHHHH — U2H

This is enough to compute the radiative corrections to the Higgs potential



RG flow of the SM couplings

The running with energy of the SM couplings has been computed up to three

loops
10—~
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All SM couplings stay small until the Planck scale =-no problem with
perturbativity

The Higgs potential becomes potentially unstable at around A; = 10 —10'% GeV



Stability of the EW vacuum

Top pole mass M, in GeV

To study the stability of the EW vacuum one looks at the Higgs effective
potential for H > v

1 y? 3
Aot () et = A2 75 |30 (4In A —6+3In3) —3y; (In T~ — 5
e
Ve (H) ~ =5 =" H (4m)
2 2 2
3 5 g3 O 3 9, 919 91 95 5
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: N VAR
i | : | | 1o bands in |
178 I " ‘TR M;,=125.1£0.2 GeV
i 10800 |- i : i 1 \(\ADM (red dotted)
" VY @3=0.1184+0.0007
= o \ ‘\ \
: L - \ \ (gray dashed) |
1767 ' BN
3=
600 |-
. g 10
174 z i
[ -JT—;
0]
L “ 10400 L
172 .
170””’,":,/,' 10200 1
o Stability I
1687/““‘ s s ] b —— e N— —— —i
120 122 124 126 128 130 132 171 172 173 174 175 176

Higgs pole mass M), in GeV
sesp " Pole top mass M, in GeV



Custodial symmetry

Rearrange the Higgs field as a 2x2 complex matrix

_ Y[ e ¢ 2Ty ) 2
c1>_\/§(_¢_ q;) V(®) = =12 Tr(PTD) + A[Tr(dT®)]

The Higgs potential is invariant under SU(2); x SU(2)r

SU2),:®—Ur® SUQ2)z:® — dU,
The kinetic term
Tv(D,®) D*® D, =08, + 2'%25 W, — ig—;BMCI)(fg
is invariant under SU(2);, x SU(2)z onlyif g — 0

Liny = Tr(D,®)T D ®|, _g



Custodial symmetry

After spontaneous symmetry breaking SU(2);, x SU(2)g is broken

oem = (o V) = v Ul £ olel

However Uy (0|® O>U£ = (0|®|0), leaving a residual SU(2) 1+ r symmetry,
called ""custodial” symmetry

In the limit g1 — 0, W™, W~ , Z form a triplet under SU(2);,r = Mw = Mz

For g1 # 0, one defines the p parameter as

My, g3
M2 g2+ g3

2
My,
M?Z cos? Oy

—cos’by = p= = 1 (tree level)

Experimentally, poxp = 1.0060 == 0.0010, suggesting that custodial symmetry is
broken very mildly [ALEPH, DELPHI, L3, OPAL, SLD Phys. Rep 427 (2006) 257]



Breaking of custodial symmetry in the SM

Higgs loop corrections to W and Z masses

,}_l\ {// \\) A . UGrpMy sin” Oy | my
// N \ 10|gl7éo - 2 I 2
u\/\/\/\/\i/\/\/\/\/\/\/\i/\/\/\/\m \/\/\/\/\/\/\M\f\//\/\/\/\/\/\/\ 24+/2m myz
+
Yukawa interactions break custodial symmetry unless h, = hy
4 4
b f
3G m2m? m?
Apln. 2n, =+ (m2+m2—2 t b _1p 1L

Get an idea of SM m g from EW precision data



Breaking of custodial symmetry in the SM

6 March 2012 My = 152 GeV
5 — Aaﬁa)d =
— 0.02750+0.00033
--- 0.02749+0.00010
4 - ++ incl. low Q° data
T
35 3
2
14
{LEP LHC
0 excluded excluded
40 100 200



Learning outcomes

In this lecture we have learnt

The BEH Higgs gives a mass to vector bosons via spontaneous symmetry
breaking

The form of the potential gives rise (or not) to an incomplete multiplet of
scalar “Higgs” bosons

The Standard Model contains only one neutral Higgs boson

The observed mass of the SM Higgs boson is compatible with a metastable
Higgs vacuum

The SM Higgs potential possesses a custodial symmetry which, from
experimental data, is broken very mildly



