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An effective field theory for structure formation

This time I’m going to talk about a slightly unusual application of EFT principles, 
to structure formation in the universe.

This is not something I’m involved with personally, so none of this 
is my own work (although you can blame me for the presentation)

◉ Cosmological non-linearities as an effective fluid, Baumann et al. arXiv:1004.2488

◉ The effective field theory of cosmological large scale structures, Carrasco et al. arXiv:1206.2926

◉ The effective field theory of large scale structures at two loops, Carrasco et al. arXiv:1310.0464

◉ Renormalized halo bias, Assassi et al. arXiv:1402.5916

◉ Effective theory of large-scale structure with primordial non-Gaussianity, Assassi et al. arXiv:1505.06668



The Great Wall

To accurately determine the redshift of each galaxy, it was 
necessary to make painstaking measurements of the spectrum. 

This could require up to an hour of observing per galaxy.

Fingers of God

CfA2 (1985–1995)

CREDIT SAO, CfA2



2dF (“2 degree field,” 1997–2002)

CREDIT 2dF team

The density perturbation is linear on 
large scales

… but very nonlinear on 
small scales

This means we can only predict clustering 
properties on large scales.  
It limits the primordial information we can extract



Siding Spring Observatory



VLT at Cerro Paranal





Artist’s impression of the European Extremely Large Telescope



SDSS telescope



Sloan Digital 
Sky Survey

CREDIT SDSS



The traditional approach to this problem is to use N-body codes, but these are expensive. 
Also, it’s not easy to set up the correct non-Gaussian initial conditions.

CREDIT Virgo Consortium



Cosmology: background

Our first job is to describe the spacetime

ds2 = �dt2 + a(t)2dx2 = �dt2 + a(t)2
h
dx2 + dy2 + dz2

i

The evolution of a(t) is given by the Einstein equations

Gab = 8⇡GTab

Rab �
1

2
Rgab

“Einstein tensor”

1

M2
P

Reduced Planck mass
MP ⇡ 1018 GeV

energy–momentum tensor 
stress–energy tensor

inflation makes space flatscale factor



Cosmology: background

For the background, the only Einstein equation we need is

3H2M2
P = ρ =

∑

i

ρi

for independent 
species

≈ ρm + ρr + ρΛ

matter

radiation

dark energy

1 =
ρm

3H2M2
P

+
ρr

3H2M2
P

+
ρΛ

3H2M2
P

divide through by 3H2M2
P

= Ωm + Ωr + ΩΛ

we call these the “density parameters” 
In a flat model they sum to 1



Structure forms by condensation

overdense 
region

each small parcel of nearby matter is attracted into 
a potential well

F = ma

M ! M +m

then more matter is attracted …

M

m



F = ma
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The condensation process is non-relativistic and the gravitational 
potential stays perturbatively small, Φ ≈ 10–5

acceleration
internal 
pressure redshifting gravity

change of mass redshifting relativistic volume modulation

often we ignore this term, 
called the “quasistatic” approximation

(in fact Φ is close to this value almost everywhere)
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The condensation process is non-relativistic and the gravitational 
potential is perturbatively small, Φ ≈ 10–5

gravity
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Poisson constraint

=
3H2
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nonlinear advection terms 
cf. Navier–Stokes ∂tu+ u ·∇u− ν∇2u = −∇w + g

viscosity forces



overdense 
region

M

m

if the inflow is effectively radial then we need only ✓ = @iv
i

vi = @i@
�2✓

vi

vi
rotation would require

! = r⇥ v

rotation is generated only at 
higher order in the perturbations, so we can 
ignore it



F = ma

M ! M +m
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F = ma

M ! M +m

Given an initial state, whose statistical properties we can calculate 
using the rules from the last lecture, we can solve perturbatively. 

This is just the same as in field theory.

When we do so, we will encounter loop integrals.



Z
d4q

(2⇡)4
1

q2 +m2
Field theory

vacuum state has no excitations 
loop averages over quantum fluctuations



Structure 
formation

Z
d3q

(2⇡)3
P (k)

state populated with excitations described statistically 
loop averages the effect of these excitations

k

q

k � q



Structure 
formation

Z
d3q

(2⇡)3
P (k)

k

q

k � q

kNLlinear nonlinear

unknown details of galaxy formation, gas 
dynamics, feedback …

q < kNL

q > kNL ultravioletThe loop momentum q runs over 
all scales, including those we 
don’t understand

perturbative rearrangement of 
initial conditions

Z
d3q

(2⇡)3
+



Structure 
formation

Z
d3q

(2⇡)3
P (k)

k

q

k � q

kNLlinear nonlinear
⇤

Our standard tool for separating 
averages over fluctuations we 
understand from those we don’t 
is effective field theory

Cut off the loop integrals at some momentum Λ 
The cut-off parametrizes their dependence on the unknown UV scales 
Finally, renormalize to make predictions independent of Λ

perturbative rearrangement of 
initial conditions

Z
d3q

(2⇡)3
unknown details of galaxy formation, gas 
dynamics, feedback …+



Structure 
formation

Z
d3q

(2⇡)3
P (k)

kNLlinear nonlinear
⇤

perturbative rearrangement of 
initial conditions

Z
d3q

(2⇡)3
unknown details of galaxy formation, gas 
dynamics, feedback …+



Structure 
formation

Z
d3q

(2⇡)3
P (k)

kNLlinear nonlinear
⇤

perturbative rearrangement of 
initial conditions

Z
d3q

(2⇡)3
unknown details of galaxy formation, gas 
dynamics, feedback …+

Forward process linear

nonlinear

–nonlinear

a linear mode splits into 
two nonlinear modes

its energy is lost from the 
linear regime ➝ dissipation

linear ➝ nonlinear

nonlinear

Backward process linear

nonlinear

–nonlinear

two nonlinear modes 
coalesce into a linear mode

energy is recovered from the 
nonlinear bath ➝ fluctuations

linear➝



Structure 
formation

Z
d3q

(2⇡)3
P (k)

linear

nonlinear

–nonlinear

linear

Z

nonlinear

2

=

The loop is the average of these two processes

Other loops have a similar interpretation

linear

nonlinear

–nonlinear

linear

⇤

k

q

➝



The 22 contribution

At 1-loop these are the only possibilities. First, consider the 22 contribution

P22(k) =

Z
d3q

(2⇡)3
P (q)P (k � q)

⇣
k, q and z-dependent piece

⌘

Capture low-energy behaviour 
by expanding in k P (q) + k2 ⇥ · · · A0(q, z) + k2A2(q, z) + · · ·

=

Z
d3q

(2⇡)3
P (q)2A0(q, z) + k2 ⇥ · · ·Result is analytic in k2

Inverse Fourier 
transform

h�(x)�(x+ r)i ⇠ �(r) @2
r�(r)+ + · · ·



The 22 contribution

=

Z
d3q

(2⇡)3
P (q)2A0(q, z) + k2 ⇥ · · ·Result is analytic in k2

Inverse Fourier 
transform

h�(x)�(x+ r)i ⇠ �(r) @2
r�(r)+ + · · ·



The 22 contribution

=

Z
d3q

(2⇡)3
P (q)2A0(q, z) + k2 ⇥ · · ·Result is analytic in k2

Inverse Fourier 
transform

h�(x)�(x+ r)i ⇠ �(r) @2
r�(r)+ + · · ·

This is a standard argument in field theory — only non-analytic terms 
lead to long-range effects; everything else can be absorbed into a local counterterm.

Energy transfer to and from the non-linear bath happens below the resolution of the EFT. 
It looks purely local viewed from larger scales.



resolution

∼ k−1
NL

The effective theory doesn’t resolve what happens on scales below the cutoff



resolution

∼ k−1
NL

Start with a mode in the perturbative regime which we are tracking 
It decays into two high-momentum modes and is lost into the non-linear bath



resolution
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Start with a mode in the perturbative regime which we are tracking 
It decays into two high-momentum modes and is lost into the non-linear bath

The high-momentum modes get scrambled while we are not looking
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resolution

∼ k−1
NL

Start with a mode in the perturbative regime which we are tracking 
It decays into two high-momentum modes and is lost into the non-linear bath

The high-momentum modes get scrambled while we are not looking

Then they get returned to the low-energy regime

Processes 
happening in 
these boxes are 
independent, so 
give δ-function 
correlations



The 13 contribution

P13(k) = P (k)

Z
d3q

(2⇡)3
P (q)

⇣
k, q and z-dependent piece

⌘

nonanalyticity inherited 
from linear result

low-k expansion will systematically 
modify the linear long-range behaviour

⇠ k2 ⇥ · · ·

The leading behaviour is k2. We could keep more terms 
in the low-energy expansion if we wished.

Its coefficient is ⇠
Z ⇤ d3q

(2⇡)3
P (q)B2(q, z)

The cutoff dependence has to be renormalized



Removing the Λ dependence

To absorb the cutoff we need a counter term which gives k2 behaviour at tree-level

k k
counterterm
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Removing the Λ dependence

To interpret the counterterms, go back to the momentum equation in terms of v

∂tvi + · · ·− 1

a2
∂iΦ = A(t)∂iδ +B(t)∂2vi + C(t)∂i∂jv

j

viscosity

Compare to Navier–Stokes ∂tu+ u ·∇u− ν∇2u− η∇(∇ · u) = −∇w + g

(of course, this is why these terms appear in the Navier–Stokes equation anyway, because 
it is a long-wavelength approximation to nonlinear small scale dynamics)

∇p ∼ c2s∇ρsound speed

The other candidate counterterm at k2 would be ∂i∂jΦ, but it is redundant



Removing the Λ dependence

∂tvi + · · ·− 1

a2
∂iΦ = A(t)∂iδ +B(t)∂2vi + C(t)∂i∂jv

j

A(t), B(t) and C(t) are unknown functions of time that must 
measured from observations

Only a single linear combination appears in the one-loop power spectrum

To interpret the counterterms, go back to the momentum equation in terms of v

The other candidate counterterm at k2 would be ∂i∂jΦ, but it is redundant



Removing the Λ dependence

∂tvi + · · ·− 1

a2
∂iΦ = A(t)∂iδ +B(t)∂2vi + C(t)∂i∂jv

j +Θ

Take Θ to be a stochastic variable with (nearly-) δ-function correlations

⟨Θ(x)Θ(x+ r)⟩ ∼ δ(r) + ∂2
rδ(r) + · · ·

by adjusting the time-dependent coefficients of these δ-functions 
we can absorb the δ-function divergences in P22

To interpret the counterterms, go back to the momentum equation in terms of v

The other candidate counterterm at k2 would be ∂i∂jΦ, but it is redundant



from Carrasco, Hertzberg & Senatore arXiv:1206.2926



from Carrasco, Foreman, Green & Senatore arXiv:1310.0464



from Assassi et al. arXiv:1505.06668



Pros and cons

Works well for dark matter where we need only a few counterterms  
to renormalize the power spectrum 

In reality the situation is more complex because of bias. 
The observed density fluctuation depends on composite operators 
δ, δ2, δ3 and others which need to be renormalized 
Assassi, Baumann et al. arXiv:1402.5916 

With too many counterterms the theory stops being predictive.  
This is the usual trade-off with an effective field theory. 

Recently generalized for non-Gaussian initial conditions, which would 
let us look at the primordial physics on Tuesday  
Assassi, Baumann et al. arXiv:1505.06668


